dc.contributor
Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
dc.contributor.author
De Santiago , Jessica
dc.date.accessioned
2021-04-07T11:47:44Z
dc.date.available
2023-03-19T23:45:27Z
dc.date.issued
2021-03-19
dc.identifier.uri
http://hdl.handle.net/10803/671346
dc.description.abstract
In neuropsychiatry, the development of brain imaging and dedicated data analysis for personalized medicine promises to predict both the evolution of diseases and responses of treatments. The ability to estimate the time course of the disease is the first step to understand the response to potential treatments, which implies the development of methods able to capture subject-specific features in addition to the discrimination between pathological conditions. However, methods that effectively characterize the neuronal activity at the whole-brain level are still lacking, and many efforts are currently made in the fields of clinical research and neuroscience to fill this gap. The above is particularly problematic to interpret functional Magnetic Resonance Imaging (fMRI) data, which are indirectly coupled with neuronal activity because of hemodynamics, yielding much slower signals than neuronal activity. We propose a multiscale method that combines a computational whole-brain model with machine learning to solve this issue. In our approach, the model relates the neuronal activity and the fMRI signals in a mechanistic fashion, allowing for access to neuronal activity down to millisecond precision. Specifically, we use a novel methodology that allows the extraction of space-time motifs at different timescales through binned time windows. Then, we use machine learning to study which range of timescales in the modeled neuronal activity is most informative to separate the brain's dynamics during rest, distinguishing subjects, tasks, and neuropsychiatric conditions. Our multiscale computational approach is a further step to study the multiple timescales of brain dynamics and predict the dynamical interactions between brain regions. Overall, this method raises outlooks to detect biomarkers and predict responses of treatments.
en_US
dc.description.abstract
En neuropsiquiatría, el desarrollo de imágenes cerebrales y el análisis de datos dedicados a la medicina personalizada prometen predecir tanto la evolución de las enfermedades como las respuestas a los tratamientos. La capacidad de estimar el curso temporal de la enfermedad es el primer paso para comprender la respuesta a posibles tratamientos, lo que implica el desarrollo de métodos capaces de capturar características específicas del sujeto, además de la discriminación entre condiciones patológicas. Sin embargo, todavía faltan métodos que caractericen eficazmente la actividad neuronal a nivel de todo el cerebro, y actualmente se están haciendo muchos esfuerzos en los campos de la investigación clínica y la neurociencia. Lo anterior es particularmente problemático para interpretar los datos funcionales de las imágenes de resonancia magnética (fMRI por sus siglas en inglés), que están acoplados indirectamente con la actividad neuronal debido a la hemodinámica, lo que produce señales mucho más lentas que la actividad neuronal. En este trabajo, proponemos un método multiescala que combina un modelo computacional de cerebro completo con aprendizaje automático para resolver este problema. En nuestro enfoque, el modelo relaciona la actividad neuronal y las señales de resonancia magnética funcional de manera mecanicista, lo que permite el acceso a la actividad neuronal con una precisión de milisegundos. Específicamente, utilizamos una nueva metodología que permite la extracción de patrones espacio-temporales en diferentes escalas temporales a través de ventanas de tiempo. Después, usamos aprendizaje automático para estudiar qué rango de escalas de tiempo en la actividad neuronal modelada es más informativo, para separar la dinámica del cerebro durante el descanso, distinguiendo sujetos, tareas y condiciones neuropsiquiátricas. Nuestro enfoque computacional multiescala es un paso más para estudiar las múltiples escalas de tiempo de la dinámica del cerebro y predecir las interacciones dinámicas entre las regiones del cerebro. En general, este método aumenta las perspectivas para detectar biomarcadores y predecir la respuesta de tratamientos.
en_US
dc.format.extent
112 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Whole-brain modeling
en_US
dc.subject
Machine learning
en_US
dc.subject
Space-time motifs
en_US
dc.subject
Biomarkers
en_US
dc.subject
Personalized medicine
en_US
dc.subject
Modelado computacional del cerebro completo
en_US
dc.subject
Patrones espaciotemporales
en_US
dc.subject
Aprendizaje automático
en_US
dc.subject
Biomarcadores
en_US
dc.subject
Medicina personalizada
en_US
dc.title
Extracting informative spatio-temporal features from fMRI dynamics : a model-based characterization of timescales
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
jessica.desantiago@upf.edu
en_US
dc.contributor.director
Deco, Gustavo
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Programa de doctorat en Tecnologies de la Informació i les Comunicacions