Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
La memòria consta de dues parts. En la primera d'elles s'estudien les òrbites homoclíniques i heteroclíniques associades als punts d'equilibri triangulars del problema restringit circular i pla per valors del paràmetre de masses compresos entre 0.1 i 0.5, es donen resultats referents a la seva forma i nombre. En la segona part òrbita halo al voltant del punt l1 del sistema terra-sol, utilitzant les idees geomètriques que proporciona la teoria dels sistemes dinàmics. Es comença l'estudi per models senzills a fi de veure l'essencial de la geometria del problema i la influencia de la lluna, per finalitzar utilitzant el model de sistema solar real donat per les efemèrides del JPL.
invariant manifolds; òrbites de libració; transferències; transfer orbits; problema restringit; varietats invariants; restricted three roby problem; òrbites halo; halo orbits; libration point orbits
51 - Mathematics; 52 - Astronomy. Astrophysics. Space research. Geodesy; 62 - Engineering
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.