Mechanisms and modulation of cortical rhythms and complexity

dc.contributor
Universitat de Barcelona. Facultat de Medicina i Ciències de la Salut
dc.contributor.author
Barbero Castillo, Almudena
dc.date.accessioned
2021-05-12T06:28:29Z
dc.date.available
2022-07-17T02:00:09Z
dc.date.issued
2020-07-17
dc.identifier.uri
http://hdl.handle.net/10803/671619
dc.description
Programa de Doctorat en Biomedicina / Tesi realitzada a l'Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
en_US
dc.description.abstract
Throughout various brain states, billions of neurons interact resulting in a variety of cortical rhythms accompanied by switches between behavioral states (Gervasoni et al., 2004). As a result of the specific (1) structure (layers and columns), (2) connections and (3) components (excitatory and inhibitory neurons expressing receptors and ion channels) within the cortical networks, switches in the cortical network state are possible. From synchronized cortical regimes of slow wave activity (SWA) during deep sleep or anesthesia (Steriade et al., 2001), global activity can change to irregular and spatiotemporally complex cortical activity during arousal states (Duarte et al., 2017; Steriade et al., 2001). If the underlying cellular or molecular regulatory mechanisms of these transitions are altered, aberrant cortical rhythms and behavioral states may appear (e.g., epilepsy or consciousness disorders). Thus, healthy and altered patterns of cortical activity correlate with behavioral states. Many methods have been used to detect the level of consciousness based on cortical activity (spontaneous or evoked activity). The Perturbational Complexity Index (PCI) (Casali et al., 2013) can effectively detect the level of complexity in humans and also in cortical slices in vitro (sPCI) (D'Andola et al., 2017) based on the cortical evoked responses after electrical stimulation. Because (1) cortical activity patterns can be simulated in in vitro preparations (Compte, 2003; Sanchez-Vives et al., 2010), (2) shifting between cortical rhythms can occur independently of thalamic inputs, and (3) as a result of neuromodulators acting directly on cortex(Constantinople and Bruno, 2011), we can specifically activate or inactivate ion channels or receptors in order to induce changes in the spontaneous or evoked activity (sPCI) and provide insights into the underlying mechanisms controlling the transition between different cortical rhythms and complexity. To investigate these, (1) we replicated SWA and awake-like regimes to validate isolated cortical slices as a model of brain states and analyzed sPCI as a methodological tool to quantify network complexity; (2) we studied the contribution of excitatory and inhibitory components to the different cortical network rhythms and complexity; and (3) we identified cellular mechanisms underlying the modulation of cortical states by regulating the levels of different neurotransmitters involved in brain state transitions and complexity. The main methods used during this doctoral thesis consisted of an in vitro preparation of cortical brain slices from ferrets, which spontaneously display SWA. We recorded the cortical activity with a 16-channel array, and modulated the spontaneous and evoked cortical activity by the bath application of agonist/antagonists of ion channels/receptors. We also modulate cortical activity using electrical tools (through direct current stimulation) or photopharmacology tools. The results exposed within this thesis revealed that isolated cortical slices can display different cortical activity patterns and levels of complexity detected by sPCI (D'Andola et al., 2017). Using this model, we demonstrated that the disruption of inhibitory and excitatory balances has important effects over the regime of cortical activity and the cortical complexity. We demonstrated that inhibition (fast and slow) maintains cortical activity patterns through the modulation of excitability and their oscillatory frequency. In addition, we demonstrated that certain levels of excitability are required to induce higher complexity states. When we induced changes in excitability through (1) K+ channels or muscarinic acetylcholine receptors; (2) or with inactivation of K+ channels or blocking inhibition, the network shifts from the bistable response to more heterogeneous responses (increasing network complexity states) or to a homogeneous epileptic response (decreasing network complexity states), respectively. Thus, these findings suggest that the maintenance of cortical rhythms and neural complexity at physiological levels requires the coordinated contribution of the balance between excitation and inhibition and excitability, parameters that can be modulated by different mechanisms, like neurotransmitters, drugs or exogenous stimulation.
en_US
dc.format.extent
152 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Neurociències
en_US
dc.subject
Neurociencias
en_US
dc.subject
Neurosciences
en_US
dc.subject
Neurofisiologia
en_US
dc.subject
Neurofisiología
en_US
dc.subject
Neurophysiology
en_US
dc.subject
Cognició
en_US
dc.subject
Cognición
en_US
dc.subject
Cognition
en_US
dc.subject
Escorça cerebral
en_US
dc.subject
Corteza cerebral
en_US
dc.subject
Cerebral cortex
en_US
dc.subject.other
Ciències de la Salut
en_US
dc.title
Mechanisms and modulation of cortical rhythms and complexity
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
616.8
en_US
dc.contributor.director
Sánchez-Vives, María Victoria
dc.contributor.tutor
Sánchez-Vives, María Victoria
dc.embargo.terms
24 mesos
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

ABC_PhD_THESIS.pdf

25.65Mb PDF

This item appears in the following Collection(s)