In silico design of antibodies for biomedical applications

dc.contributor
Universitat de Barcelona. Facultat de Biologia
dc.contributor.author
Amengual-Rigo, Pep
dc.date.accessioned
2021-12-14T10:38:55Z
dc.date.available
2021-12-14T10:38:55Z
dc.date.issued
2021-02-15
dc.identifier.uri
http://hdl.handle.net/10803/672944
dc.description
Programa de Doctorat en Biomedicina / Tesi realitzada al Barcelona Supercomputing Center (BSC)
en_US
dc.description.abstract
Proteins are large macromolecules constituted by amino acids that are responsible for most of the biological processes within a cell. Proteins showing high complementary affinity may bind forming protein-protein complexes. In this context, antibodies are proteins that recognize abnormal particles in the body (known as epitopes), and are elicited by means of random recombinatory events followed by strict screening selection processes. Along their production, antibodies can be modified by mutation events leading to potent antibody variants. In this sense, there is an industrial and biomedical interest for the artificial optimization of antibodies. The rise of the computational era together with the deeper understanding of structural biology allowed the design and implementation of predictive algorithms for simulating the effects of mutations in protein-protein complexes. This process usually involves, among others, the prediction of changes in Gibbs free energy upon mutation and the use of other computational simulations for unveiling motions and binding patterns, such as Molecular Dynamics and Monte Carlo techniques. During this thesis, we have developed and implemented predictive algorithms focused on the design of potent antibody variants. We developed UEP, an open-source code for predicting the effects of mutations in protein-protein complexes. UEP differs from the state-of-the-art and employs other sources of knowledge rather than experimental binding affinity determinations upon mutation. Moreover, we designed a PELE protocol to simulate the binding affinity of antibodies against hypermutated HIV-1 viral isolates. Finally, we describe three different computational workflows for antibody optimization. We particularly focused on the challenge of increasing the binding potency of the N6 antibody, one of the best antibodies against HIV-1. Each computational workflow has been evaluated experimentally by our collaborators from Irsicaixa, and such combined computational and experimental effort resulted in the design of an improved variant of the N6 antibody against HIV-1.
en_US
dc.format.extent
166 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Ciències de la salut
en_US
dc.subject
Ciencias biomédicas
en_US
dc.subject
Medical sciences
en_US
dc.subject
Anticossos monoclonals
en_US
dc.subject
Anticuerpos monoclonales
en_US
dc.subject
Monoclonal antibodies
en_US
dc.subject
Disseny de medicaments
en_US
dc.subject
Diseño de medicamentos
en_US
dc.subject
Drug design
en_US
dc.subject
Algorismes
en_US
dc.subject
Algoritmos
en_US
dc.subject
Algorithms
en_US
dc.subject
Mutació (Biologia)
en_US
dc.subject
Mutación (Biología)
en_US
dc.subject
Mutation (Biology)
en_US
dc.subject.other
Ciències de la Salut
en_US
dc.title
In silico design of antibodies for biomedical applications
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
577
en_US
dc.contributor.director
Guallar i Tasies, Víctor
dc.contributor.tutor
Gelpí Buchaca, Josep Lluís
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

JAAR_PhD_THESIS.pdf

35.13Mb PDF

This item appears in the following Collection(s)