Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
The main objective of this thesis was to study the variability of the cardiac, respiratory and vascular systems through electrocardiographic (ECG), respiratory flow (FLW) and blood pressure (BP) signals, in patients with idiopathic (IDC), dilated (DCM), or ischemic (ICM) disease. The aim of this work was to introduce new indices that could contribute to characterizing these diseases. With these new indices, we propose methods to classify cardiomyopathy patients (CMP) according to their cardiovascular risk or etiology. In addition, a new tool was proposed to reconstruct artifacts in biomedical signals. From the ECG, BP and FLW signals, different data series were extracted: beat to beat intervals (BBI - ECG), systolic and diastolic blood pressure (SBP and DBP - BP), and breathing duration (TT - FLW). -Firstly, we propose a novel artifact reconstruction method applied to biomedical signals. The reconstruction process makes use of information from neighboring events while maintaining the dynamics of the original signal. The method is based on detecting the cycles and artifacts, identifying the number of cycles to reconstruct, and predicting the cycles used to replace the artifact segments. The reconstruction results showed that most of the artifacts were correctly detected, and physiological cycles were incorrectly detected as artifacts in fewer than 1% of the cases. The second part is related to the cardiac death risk stratification of patients based on their left ventricular ejection (LVEF), using the Poincaré plot analysis, and classified as low (LVEF > 35%) or high (LVEF = 35%) risk. The BBI, SBP, and IT series of 46 CMP patients were applied. The linear discriminant analysis and support vector machines (SVM) classification methods were used. When comparing low risk vs high risk, an accuracy of 98 12% was obtained. Our results suggest that a dysfunction in the vagal activity could prevent the body from correctly maintaining circulatory homeostasis Next, we studied cardio-vascular couplings based on heart rate (HRV) and blood pressure (BPV) variability analyses in order to introduce new indices for noninvasive risk stratification in IDC patients. The ECG and BP signals of 91 IDC patients, and 49 healthy subjects were used. The patients were stratified by their sudden cardiac death risk as: high risk (IDCHR), when after two years the subject either died or suffered complications, or low risk (IDCLR) otherwise. Several indices were extracted from the BBI and SBP, and analyzed using the segmented Poincaré plot analysis, the high-resolution joint symbolic dynamics, and the normalized short time partial directed coherence methods. SVM models were built to classify these patients based on their sudden cardiac death risk. The SVM IDCLR vs IDCHR model achieved 98 9% accuracy with an area under the curve (AUC) of 0.96. Our results suggest that IDCHR patients have decreased HRV and increased BPV compared to both the IDCLR patients and the control subjects, suggesting a decrease in their vagal activity and the compensation of sympathetic activity. Lastly, we analyzed the cardiorespiratory interaction associated with the systems related to ICM and DCM disease. We propose an analysis based on vascular activity as the input and output of the baroreflex response. The aim was to analyze the suitability of cardiorespiratory and vascular interactions for the classification of ICM and DCM patients. We studied 41 CMP patients and 39 healthy subjects. Three new sub-spaces were defined: 'up' for increasing values, 'down' for decreasing values, and 'no change' otherwise, and a three-dimensional representation was created for each sub-space that was characterized statistically and morphologically. The resulting indices were used to classify the patients by their etiology through SVM models achieving 92.7% accuracy for ICM vs DCM patients comparison. The results reflected a more pronounced deterioration of the autonomous regulation in DCM patients.
El objetivo de esta tesis fue estudiar la variabilidad de los sistemas cardíaco, respiratorio y vascular a través de señales electrocardiográficas (ECG), de flujo respiratorio (FLW) y de presión arterial (BP), en pacientes con cardiopatía idiopática (IDC). dilatada (DCM) o isquémica (ICM). El objetivo de este trabajo fue introducir nuevos indices que contribuyan a caracterizar estas enfermedades. Proponemos métodos para clasificar pacientes con cardiomiopatía (CMP) de acuerdo con su riesgo cardiovascular o etiología. Además, se propuso una nueva herramienta para reconstruir artefactos en señales biomédicas. De las señales de ECG, BP y FLW, se extrajeron diferentes series temporales: intervalos latido-a-latido (BBI - ECG), presión arterial sistólica y diastólica (SBP y DBP - BP) y la duración de la respiración (TT - FLW). En primer lugar, proponemos un método de reconstrucción de artefactos aplicado a señales biomédicas. El proceso de reconstrucción usa la información de eventos vecinos manteniendo la dinámica de la señal. El método se basa en detectar ciclos y artefactos, en identificar el número de ciclos a reconstruir y en predecir los ciclos utilizados para reemplazar los artefactos. La mayoría de los artefactos probados fueron detectados y reconstruidos correctamente y los ciclos fisiológicos fueron detectados incorrectamente como artefactos en menos del 1% de los casos, La segunda parte está relacionada con la estratificación de riesgo de muerte cardiovascular en función de la fracción de eyección ventricular izquierda (FEVI), mediante el análisis de Poincaré, en bajo (FEVI > 35%) y alto riesgo (FEVI 5 35%). Se utilizaron las series BBI, SBP y TT de 46 pacientes con CMP. Se utilizaron para la clasificación el análisis discriminante lineal y las máquinas de soporte vectorial (SVM). Al comparar los pacientes de bajo y alto riesgo, se obtuvo una exactitud del 98%. Los resultados sugieren la disfunción de la actividad vagal en pacientes de alto riesgo. A continuación, estudiamos los acoplamientos cardiovasculares basados en el análisis de la variabilidad de la frecuencia cardiaca (HRV) y la presión arterial (BPV) para introducir nuevos índices de estratificación de riesgo en pacientes con IDC. Se utilizaron las señales de ECG y BP de 91 pacientes con IDC y 49 sujetos sanos. Los pacientes fueron estratificados por su riesgo cardíaco como: alto riesgo (IDCHR), cuando después de dos años el sujeto murió, o bajo riesgo (IDCLR) en otro caso. Se extrajeron indices utilizando el análisis de Poincaré segmentado, la dinámica simbólica articulada de alta resolución y la coherencia parcial dirigida a corto plazo normalizada. Se construyeron modelos SVM para clasificar a estos pacientes en función de su riesgo cardiovascular. El modelo IDCLR vs IDCHR logró una exactitud del 98% con un área bajo la curva de 0.96. Los resultados sugieren que los pacientes IDCHR tienen sus HRV y BPV disminuidos en comparación con los pacientes IDCLR, lo que sugiere una disminución en su actividad vagal y la compensación de la actividad simpática. Finalmente, analizamos la interacción cardiorrespiratoria asociada con los sistemas relacionados con ICM y DCM. Proponemos un análisis basado en la actividad vascular como entrada y salida de la respuesta baroreflectora. El objetivo fue analizar la capacidad de las interacciones cardiorrespiratorias y vasculares para la clasificación de pacientes con ICM y DCM. Estudiamos 41 pacientes con CMP y 39 sujetos sanos. Se definieron tres sub-espacios: 'up' para valores crecientes, 'down' para los decrecientes, y 'no-change' en otro caso, y se creó una representación tridimensional que se caracterizó estadística y morfológicamente. Los indices resultantes se usaron para clasificar a los pacientes por su etiología con modelos SVM que lograron una exactitud de 92% cuando los pacientes ICM y DCM fueron comparados. Los resultados reflejaron un deterioro más pronunciado de la regulación autónoma en pacientes con DCM.
616.1 - Patologia del sistema circulatori, dels vasos sanguinis. Trastorns cardiovasculars; 68 - Indústries, oficis i comerç d'articles acabats. Tecnologia cibernètica i automàtica
Àrees temàtiques de la UPC::Enginyeria biomèdica
Aplicat embargament des de la data de defensa fins el dia 20/5/2022
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.