Unravelling genetic predisposition to familial breast and ovarian cancer: new susceptibility genes and variant interpretation by in silico approaches

dc.contributor
Universitat de Barcelona. Facultat de Biologia
dc.contributor.author
Moles Fernández, Alejandro
dc.date.accessioned
2022-06-03T13:57:10Z
dc.date.available
2022-07-30T01:00:11Z
dc.date.issued
2022-01-31
dc.identifier.uri
http://hdl.handle.net/10803/674414
dc.description
Programa de Doctorat en Biomedicina / Tesi realitzada a l'Institut d'Oncologia Vall d’Hebron (VHIO)
en_US
dc.description.abstract
Patients with hereditary breast and ovarian cancer (HBOC) in whom a causative pathogenic variant is not identified after genetic analysis may not benefit from prevention, early detection, or precision treatment measures. This negative or inconclusive results are due, among other causes, to the detection of variants of uncertain significance (VUS).The main objective of this thesis is to increase the capacity of genetic diagnosis of patients with HBOC, by focusing on i) the optimisation in the interpretation of exonic and intronic variants that might affect RNA quality or quantity but remain as variants of uncertain significance (VUS) and ii) the identification of new susceptibility genes for HBOC. The article included in this thesis, Moles-Fernández et al., 2018 (DOI: 10.3389/fgene.2018.00366) explains an optimization in the identification of potentially spliceogenic variants located near to splicing sites, and provides recommendations to use for analysing donor and acceptor sites. Moreover, the creation or activation of cryptic sites along deep intronic regions could alter splicing causing the inclusion of intronic sequences in RNA. In the article, Moles-Fernández et al., 2021 (DOI: 10.3390/cancers13133341), a framework for the identification of deep intronic spliceogenic is provided, after the performance analysis of SpliceAI in silico tool in a dataset of spliceogenic and non-spliceogenic deep intronic variants. In addition, the importance of the splicing regulatory elements balance in the pseudoexon creation is described. The American College of Medical Genetics (ACMG) variant interpretation guidelines provide general recommendations to classify variants. In the included article Feliubadalò et al., 2021 (DOI: 10.1093/clinchem/hvaa250), ACMG guidelines were adapted to ATM gene. We focused on in silico splicing evidence (PP3/BP4). After reclassification of variants following the adapted guidelines, a reduction of VUS was obtained. On the other hand, in patients without pathogenic variants identified in HBOC related genes, the phenotype could be due to deleterious variants in genes still not known associated with the disease. For this reason, in Moles-Fernández et al., (article in preparation), the aim was to identify candidate genes through exomes and extended panel analysis and validate their risk association by performing a case-control study. The significant identification of loss-of-function variants in ALKBH3, BLM, CAMKK1, FANCD2, FANCM, NEIL3, PER1, RBL1, RECQL4, WRN and XRCC4 genes in patients with HBOC suggests that they might be breast/ovarian cancer susceptibility genes.
en_US
dc.format.extent
275 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Genètica mèdica
en_US
dc.subject
Genética médica
en_US
dc.subject
Medical genetics
en_US
dc.subject
Oncologia
en_US
dc.subject
Oncología
en_US
dc.subject
Oncology
en_US
dc.subject
Simulació per ordinador
en_US
dc.subject
Simulación por ordenador
en_US
dc.subject
Computer simulation
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Unravelling genetic predisposition to familial breast and ovarian cancer: new susceptibility genes and variant interpretation by in silico approaches
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
575
en_US
dc.contributor.director
Gutiérrez Enríquez, Sara
dc.contributor.director
Díez Gibert, Orland
dc.contributor.tutor
Sànchez, Àlex (Sánchez Pla)
dc.embargo.terms
6 mesos
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

AMF_PhD_THESIS.pdf

44.26Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)