New Computational Methods for Automated Large-Scale Archaeological Site Detection

dc.contributor
Universitat Rovira i Virgili. Departament d'Història i Història de l'Art
dc.contributor.author
Berganzo Besga, Iban
dc.date.accessioned
2023-04-28T09:59:14Z
dc.date.available
2023-04-28T09:59:14Z
dc.date.issued
2023-03-10
dc.identifier.uri
http://hdl.handle.net/10803/688173
dc.description.abstract
Aquesta tesi doctoral presenta una sèrie d'enfocaments, fluxos de treball i models innovadors en el camp de l'arqueologia computacional per a la detecció automatitzada a gran escala de jaciments arqueològics. S'introdueixen nous conceptes, enfocaments i estratègies, com ara lidar multitemporal, aprenentatge automàtic híbrid, refinament, curriculum learning i blob analysis; així com diferents mètodes d'augment de dades aplicats per primera vegada en el camp de l'arqueologia. S'utilitzen múltiples fonts, com ara imatges de satèl·lits multiespectrals, fotografies RGB de plataformes VANT, mapes històrics i diverses combinacions de sensors, dades i fonts. Els mètodes creats durant el desenvolupament d'aquest doctorat s'han avaluat en projectes en curs: Urbanització a Hispània i la Gàl·lia Mediterrània en el primer mil·lenni aC, detecció de monticles funeraris utilitzant algorismes d'aprenentatge automàtic al nord-oest de la Península Ibèrica, prospecció arqueològica intel·ligent basada en drons (DIASur), i cartografiat del patrimoni arqueològic al sud d'Àsia (MAHSA), per a la qual s'han dissenyat fluxos de treball adaptats als reptes específics del projecte. Aquests nous mètodes han aconseguit proporcionar solucions als problemes comuns d'estudis arqueològics presents en estudis similars, com la baixa precisió en detecció i les poques dades d'entrenament. Els mètodes validats i presentats com a part de la tesi doctoral s'han publicat en accés obert amb el codi disponible perquè puguin implementar-se en altres estudis arqueològics.
ca
dc.description.abstract
Esta tesis doctoral presenta una serie de enfoques, flujos de trabajo y modelos innovadores en el campo de la arqueología computacional para la detección automatizada a gran escala de yacimientos arqueológicos. Se introducen nuevos conceptos, enfoques y estrategias, como lidar multitemporal, aprendizaje automático híbrido, refinamiento, curriculum learning y blob analysis; así como diferentes métodos de aumento de datos aplicados por primera vez en el campo de la arqueología. Se utilizan múltiples fuentes, como lidar, imágenes satelitales multiespectrales, fotografías RGB de plataformas VANT, mapas históricos y varias combinaciones de sensores, datos y fuentes. Los métodos creados durante el desarrollo de este doctorado han sido evaluados en proyectos en curso: Urbanización en Iberia y la Galia Mediterránea en el Primer Milenio a. C., Detección de túmulos mediante algoritmos de aprendizaje automático en el Noroeste de la Península Ibérica, Prospección Arqueológica Inteligente basada en Drones (DIASur), y cartografiado del Patrimonio del Sur de Asia (MAHSA), para los que se han diseñado flujos de trabajo adaptados a los retos específicos del proyecto. Estos nuevos métodos han logrado proporcionar soluciones a problemas comunes de la prospección arqueológica presentes en estudios similares, como la baja precisión en detección y los pocos datos de entrenamiento. Los métodos validados y presentados como parte de la tesis doctoral se han publicado en acceso abierto con su código disponible para que puedan implementarse en otros estudios arqueológicos.
ca
dc.description.abstract
This doctoral thesis presents a series of innovative approaches, workflows and models in the field of computational archaeology for the automated large-scale detection of archaeological sites. New concepts, approaches and strategies are introduced such as multitemporal lidar, hybrid machine learning, refinement, curriculum learning and blob analysis; as well as different data augmentation methods applied for the first time in the field of archaeology. Multiple sources are used, such as lidar, multispectral satellite imagery, RGB photographs from UAV platform, historical maps, and several combinations of sensors, data, and sources. The methods created during the development of this PhD have been evaluated in ongoing projects: Urbanization in Iberia and Mediterranean Gaul in the First Millennium BC, Detection of burial mounds using machine learning algorithms in the Northwest of the Iberian Peninsula, Drone-based Intelligent Archaeological Survey (DIASur), and Mapping Archaeological Heritage in South Asia (MAHSA), for which workflows adapted to the project’ s specific challenges have been designed. These new methods have managed to provide solutions to common archaeological survey problems, presented in similar large-scale site detection studies, such as the low precision in previous detection studies and how to handle problems with few training data. The validated approaches for site detection presented as part of the PhD have been published as open access papers with freely available code so can be implemented in other archaeological studies.
ca
dc.format.extent
182 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Rovira i Virgili
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Deep learning
ca
dc.subject
Remote sensing
ca
dc.subject
Arqueologia
ca
dc.subject.other
Arts i humanitats
ca
dc.title
New Computational Methods for Automated Large-Scale Archaeological Site Detection
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
00
ca
dc.subject.udc
004
ca
dc.subject.udc
9
ca
dc.subject.udc
90
ca
dc.contributor.director
Orengo, Héctor
dc.contributor.director
Lumbreras Ruiz, Felipe
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TESI Iban Berganzo Besga_.pdf

8.112Mb PDF

This item appears in the following Collection(s)