How to identify patients with high-risk HR-positive/HER2- negative breast cancer in the absence of gene expression platforms

dc.contributor
Universitat de Barcelona. Facultat de Medicina i Ciències de la Salut
dc.contributor.author
Fernández Martínez, Aranzazu
dc.date.accessioned
2024-01-11T09:17:35Z
dc.date.available
2024-01-11T09:17:35Z
dc.date.issued
2021-07-16
dc.identifier.uri
http://hdl.handle.net/10803/689727
dc.description
Programa de Doctorat en Medicina i Recerca Translacional
ca
dc.description.abstract
[eng] HR-positive/HER2-negative (HR+/HER2-) is the most common breast cancer type, and it is a molecular heterogenic disease. This heterogeneity has direct prognostic and predictive implications in both early and advanced settings. Thus, identifying high-risk HR+/HER2- breast cancer patients in the clinical practice has become a necessity, even when genomic platforms are not available. In this project, we compared the intrinsic subtype classification defined by the PAM50/Prosigna® test with 4 immunohistochemistry-based biomarkers (estrogen receptor [ER], progesterone receptor [PR], Human epidermal growth factor receptor 2 [HER2], and Ki67) in two different cohorts of 517 and 1,417 patients with HR+/HER2- breast tumors, respectively. In a first study, we evaluated the performance of Ki67 as a continuous biomarker to identify Luminal A and Risk of Relapse (ROR)-low tumors. Moreover, we explored the optimal KI67 cutoff for selecting low-risk patients in the clinic. In a second study, we built and tested an IHC- based predictor to identify PAM50 non-luminal subtypes in HR+/HER2- breast cancer. Both projects should allow a more comprehensive understanding of the biological heterogeneity within HR+/HER2- early breast cancer and provide tools to identify patients with different relapsing risks. In the first study, we evaluated a cohort of 517 patients with ER+/HER2- and node-negative breast cancer. Although most patients had Luminal A (65.6%) and ROR-low tumors (70.9%), a substantial proportion (34-43%) of tumors with Ki67 0-10% had either ROR- medium or ROR-high disease; conversely, a substantial proportion (24-29%) of tumors with Ki67 10-20% had ROR-low disease. Also, we found that the optimal Ki67 cutoff for identifying Luminal A or ROR-low tumors was 14%, concordant with previous findings reported in the literature. In the second study, we created an IHC-based predictive biomarker using ER, PR, and Ki67 data, the NOLUS score, to identify PAM50 non-luminal disease, using a training dataset of 903 patients with HR+/HER2- breast tumors. When applied to the test set, the NOLUS score was statistically significantly associated with non-luminal disease (p<0.01) with an AUC of 0.902. The proportion of non-luminal tumors in NOLUS-positive and NOLUS- negative groups was 76.9% (56.4–91.0%) and 2.6% (1.4–4.5%), and the sensitivity and specificity of the pre-specified cutoffs were 59.3% and 98.7%, respectively. Based on these results, we conclude that Ki67 as a continuous variable is an unreliable biomarker to identify patients with Luminal A and/or ROR-low HR+/HER2- breast cancer. However, in the absence of gene expression platforms, the best Ki67 cutoff for determining ROR-low or Luminal A disease is 14%. The NOLUS score can help identify patients with non-luminal disease within HR+/HER2- breast cancer.
ca
dc.format.extent
84 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
ca
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Oncologia
ca
dc.subject
Oncología
ca
dc.subject
Oncology
ca
dc.subject
Càncer de mama
ca
dc.subject
Cáncer de mama
ca
dc.subject
Breast cancer
ca
dc.subject
Expressió gènica
ca
dc.subject
Expresión génica
ca
dc.subject
Gene expression
ca
dc.subject.other
Ciències de la Salut
ca
dc.title
How to identify patients with high-risk HR-positive/HER2- negative breast cancer in the absence of gene expression platforms
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
616
ca
dc.contributor.director
Prat Aparicio, Aleix
dc.contributor.codirector
Vidal Losada, Maria
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

AFM_PhD_THESIS.pdf

6.088Mb PDF

This item appears in the following Collection(s)