dc.contributor
Universitat de Barcelona. Facultat de Biologia
dc.contributor.author
Xiol Viñas, Clara
dc.date.accessioned
2024-02-06T11:01:29Z
dc.date.available
2024-06-22T22:05:23Z
dc.date.issued
2023-12-22
dc.identifier.uri
http://hdl.handle.net/10803/689976
dc.description
Tesi realitzada a l’Institut de Recerca Sant Joan de Déu / Programa de Doctorat en Genètica
ca
dc.description.abstract
[eng] Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by a
regression in acquired skills, such as purposeful hand use and language, after an
apparently normal early development. RTT affects almost exclusively females and
is mainly caused by mutations in the X-linked MECP2 gene, encoding methyl-CpGbinding
protein 2 (MeCP2). MeCP2 is a global regulator of gene expression that
operates through different mechanisms, including transcriptional regulation,
chromatin architecture, splicing modulation, and miRNA processing. Nevertheless,
the precise pathomechanisms by which MeCP2 deficiency leads to RTT remain
elusive.
MeCP2 plays a pivotal role in neuronal maturation and maintenance in the postnatal
brain, and its deficiency causes severe defects in dendritic arborization and
synaptogenesis. Currently, RTT has no cure or any effective pharmacological
treatment, but the delineation of the downstream effects of MeCP2 deficiency could
lead to the identification of biomarkers and potential therapeutic targets for RTT. The
reversibility of RTT-like features in Mecp2-null mouse models upon Mecp2
reactivation strongly suggests that symptomatic patients could benefit from
counteracting the effects of MeCP2 deficiency. This doctoral thesis aims to profile
the molecular landscape of RTT in different ways to contribute to the understanding
of the pathomechanisms behind this disorder.
MECP2 being an X-linked gene, it has been long hypothesized that X chromosome
inactivation (XCI) patterns may influence the phenotype of RTT patients. Therefore,
this thesis has studied XCI patterns in blood and brain samples of RTT patients with
different recurrent MECP2 mutations to investigate their potential correlation with
the severity of the clinical phenotype.
Although the main features of RTT are neurologic in nature, MeCP2 is a ubiquitously
expressed protein. In this thesis, we have characterized gene expression levels in
primary fibroblast cell cultures directly derived from RTT patients using an integrative
multi-omics approach that combines transcriptomic and proteomic data to identify
the most robust gene expression changes. We have identified an enrichment in
cellular processes such as cytoskeletal activity, vesicular transport, energy
metabolism and RNA processing, with important implications for neurological
phenotypes despite having studied an extraneurological tissue. Moreover, we have
investigated the effects of MeCP2 deficiency on the expression of GABAergic
synapse proteins, and identified a developmental stage-dependent positive
regulation of their expression by MeCP2, linking GABAergic neurotransmission
defects with early events in RTT pathophysiology.
With the advent of next-generation sequencing, many patients with a clinical
diagnosis of RTT have been found to have mutations in genes other than MECP2.
Understanding the relationships and interactions between these genes may help
identifying common pathomechanisms leading to the overlapping phenotypes and
pinpoint common therapeutic targets. In this thesis, we have used comprehensive
multi-omics genomic testing to solve cases with no molecular diagnosis, and we
have studied the molecular alterations in RTT-spectrum patients fibroblasts
searching for common gene expression changes also found in RTT patients.
ca
dc.format.extent
267 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
ca
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Transcripció genètica
ca
dc.subject
Transcripción genética
ca
dc.subject
Genetic transcription
ca
dc.subject
Seqüència d'aminoàcids
ca
dc.subject
Cadenas de aminoácidos
ca
dc.subject
Amino acid sequence
ca
dc.subject
Síndrome de Rett
ca
dc.subject
Rett syndrome
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Comprehensive analysis of diagnostic approaches and molecular landscape in Rett syndrome spectrum disorders
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Armstrong i Morón, Judith
dc.contributor.director
Oyarzábal Sanz, Alfonso Luis de
dc.contributor.tutor
Rabionet Janssen, Raquel
dc.rights.accessLevel
info:eu-repo/semantics/openAccess