dc.contributor
Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
dc.contributor.author
Morales Ferez, Xabier
dc.date.accessioned
2024-06-26T15:25:16Z
dc.date.issued
2024-04-26
dc.identifier.uri
http://hdl.handle.net/10803/691519
dc.description.abstract
Although the left ventricle has traditionally held the spotlight as
the primary determinant of cardiovascular disease prognosis, the
characterization of left atrial hemodynamics is increasingly being
recognized as a potential bellwether of several cardiovascular disorders.
However, blood flow within the left atrium is pulsatile,
multidirectional, and time-varying in nature, and imaging modalities
currently available in clinical practice can only provide limited
insight into the intricate underlying hemodynamic patterns. As
a result, this thesis aims to address the challenges in the implementation
of cutting-edge cardiac hemodynamic analysis methods,
including 4D Flow magnetic resonance imaging (4D Flow MRI),
computational fluid dynamics, and deep learning, to standardize
and expedite the characterization of left atrial hemodynamics, laying
the foundation for a more comprehensive understanding of the
role of left atrial blood flow in cardiovascular disease. To achieve
this objective, the thesis is structured around three primary contributions.
Firstly, a robust computational framework was developed for
the analysis of 4D Flow MRI in the left atrium, capable of handling
multicenter data with varying quality. The framework is completely
open-source and facilitates a comprehensive qualitative and quantitative
analysis of advanced hemodynamic parameters that were
previously unexplored in any sizeable left atrial cohort. Secondly,
we derived pulsed-wave Doppler-like velocity spectrograms from
4D Flow MRI to study its potential use in left ventricular diastology
as an adjunct in challenging cases where standard echocardiographic
assessment may not be feasible. Finally, to address the
need for real-time monitoring of patient-specific hemodynamics in
the clinical setting, we developed a set of deep learning surrogates,
leveraging recent advances in graph and physics-informed neural
networks to enable adaptation to unstructured data and surpass the
limitations of the current data-driven paradigm.
ca
dc.description.abstract
Tradizionalki, ezker bentrikulua gaixotasun kardiobaskularren pronostikoaren
lehen determinatzaile foko nagusia izan bada ere, gero
eta gehiago antzematen da ezker atrioko hemodinamikaren karakterizazioaren
potentziala hainbat gaixotasun kardiobaskularren
adierazle bezala. Hala ere, ezkerreko atrioko odol-fluxua pulsatila,
norabide anitzekoa eta denbora-aldakorra da, gaur egun praktika
klinikoan eskuragai dauden irudi-modalitateek ganbera barruan aurkitzen
diren patroi hemodinamiko konplexuen irudi oso mugatua
eskaini dezaketen bitartean. Ondorioz, tesi honen helburu nagusia
bihotzeko analisi hemodinamirako punta-puntako metodoen (4D
fluxu erresonantzia magnetikoa (4D Flow MRI), fluidoen dinamika
konputazionala eta ikaskuntza sakona barne) implementazioan dauden
erronkei aurre egitea da, ezker atrioko hemodinamikaren karakterizazioa
estandarizatu eta bizkortzeko eta gaixotasun kardiobaskularren
garapenean duen garrantzia hobeto ezartzeko. Helburu hori
lortzearren, tesia hiru ekarpen nagusiren inguruan egituratzen da.
Lehenik eta behin, 4D Flow MRI ezker atrioan aztertzeko kodigo
irekiko framework konputazional bat garatu da kalitate ezberdinareko
datu multizentrikoak maneiatzeko gai dena. Framework honek,
atrio azkerrean aurretik aztertu ez diren parametro hemodinamiko
eratorrien analisi kualitatibo eta kuantitatiboa ahalbidetzen du. Bigarrenik,
Doppler pultsatuaren tankerako abiadura-espektrogramak
garatu ditugu 4D Flow MRI, ebaluazio ekokardiografiko estandarra
bideragarria ez den kasuetan ezkerreko diastologia bentrikularrean
izan dezakeen erabilera aztertzeko. Azkenik, ingurune klinikoan
hemodinamika denbora errealean monitorizatzeko beharrari aurre
egiteko, ikaskuntza sakoneko modelo multzo bat garatu dira,
fisikan-informatutako eta grafoen sare neuronaletan eman diren
aurrerapenak baliatuz, datuetan funtsatutako egungo paradigmaren
mugak gainditzeko eta datu ez-estrukturatuetara egokitzeko.
ca
dc.format.extent
253 p.
ca
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Left atrium
ca
dc.subject
Hemodynamic analysis
ca
dc.subject
4D Flow MRI
ca
dc.subject
Deep learning surrogate
ca
dc.subject
Graph neural networks
ca
dc.subject
Ezker atrioa
ca
dc.subject
Analisi hemodinamikoa
ca
dc.subject
Ikaskuntza sakona
ca
dc.subject
Grafoen sare neuronalak
ca
dc.title
Characterization of left atrial hemodynamics with 4D flow magnetic resonance imaging, in-silico models and deep learning
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
xabier.morales@upf.edu
ca
dc.contributor.director
Camara, Oscar
dc.embargo.terms
12 mesos
ca
dc.date.embargoEnd
2025-04-26T02:00:00Z
dc.rights.accessLevel
info:eu-repo/semantics/embargoedAccess
dc.description.degree
Programa de Doctorat en Tecnologies de la Informació i les Comunicacions