Machine Learning for predicting Immunotherapy response from routine Medical Imaging

Autor/a

Ligero Hernández, Marta

Director/a

Pérez López, Raquel

Sala Llonch, Roser

Tutor/a

Sala Llonch, Roser

Data de defensa

2024-03-15

Pàgines

187 p.



Departament/Institut

Universitat de Barcelona. Departament de Biomedicina

Resum

[eng] HYPOTHESIS: Precision oncology has revolutionized the landscape of cancer treatment. Emerging therapeu- tic approaches, such as immunotherapy or anti-angiogenic agents, have exhibited remarkable outcomes in solid tumors. Despite the comprehensive understanding of the underlying bio- logical mechanism driving these techniques, the translation of targeted therapies into clinical practice have resulted in benefits for only a subset of patients. Efforts have been dedicated to develop biomarkers for predicting treatment outcomes and improving patient selection. While significant progress has been made in tailoring therapeutic strategies to specific molecular and biological subtypes, no robust biomarker obtained to date can accurately anticipate tumor response. The general hypothesis within this thesis is founded on the premise that extracting robust quantitative data from standard medical images, we can effectively capture tumor pheno- types. These phenotypes could serve as indicators to identify patients who are more likely to respond to immunotherapy and other targeted therapies, thereby advancing the field of precision oncology. Specifically, we hypothesize that: • Robust radiomic features, accounting for multi-centric acquisition and standardized preprocessing, will enhance the performance of predictive models. • It is possible to capture patterns of response to immunotherapy from medical imaging representations of tumor phenotypes. • Application of radiomic predictive models can generalize to other imaging modalities and specific treatment responses. • Response to immunotherapy can be predicted from different sources of medical imaging, such as radiological and pathological imaging. OBJECTIVES: The general objective of this thesis is to evaluate the potential of quantitative medical image and machine learning modeling in deriving accurate tumor phenotype representations for patient stratification in cancer treatment. More specifically, the objectives of this thesis are: • Objective 1: To identify potential sources of variability in CT imaging acquisition that could affect Radiomics reproducibility and explore methods for variability correc- tion. • Objective 2: To develop and validate radiomic signatures derived from CT scans for predicting patient response in a population with different tumor types treated with immunotherapy. • Objective 3: To explore the use of radiomics in anti-angiogenics targeted therapies and PET imaging. • Objective 4: To investigate the performance of DL-methods applied to histological images to predict respon

Paraules clau

Immunoteràpia; Inmunoterapia; Immunotheraphy; Aprenentatge automàtic; Aprendizaje automático; Machine learning; Marcadors bioquímics; Marcadores bioquímicos; Biochemical markers; Oncologia; Oncología; Oncology

Matèries

616 - Patologia. Medicina clínica. Oncologia

Àrea de coneixement

Ciències de la Salut

Nota

Programa de Doctorat en Biomedicina / Tesi realitzada a l'Institut d'Oncologia Vall d'Hebron (VHIO)

Documents

MLH_PhD_THESIS.pdf

53.20Mb

 

Drets

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Aquest element apareix en la col·lecció o col·leccions següent(s)