Essays in Econometric Forecasting with Applications to Macroeconomics and Finance

dc.contributor
Universitat Pompeu Fabra. Departament d'Economia i Empresa
dc.contributor.author
Crespo Rey, Ignacio
dc.date.accessioned
2024-08-02T09:30:30Z
dc.date.issued
2024-06-21
dc.identifier.uri
http://hdl.handle.net/10803/691982
dc.description.abstract
This thesis comprises three chapters on econometric forecasting, with applications to macroeconomics and finance. The first chapter introduces a testing procedure for evaluating superior predictive ability (SPA) in unstable environments. Therefore, it allows one to detect time-varying superiority. Applied to downside risk forecasts for the U.S. economy, it reveals substantial time-varying heterogeneity in the forecasting performance of the commonly used method (a quantile regression equipped with financial conditions). In the second chapter, we present a variant of the standard SPA test that assesses the predictive ability of one particular method against many alternatives when forecasting a panel of time series. Our empirical analysis assesses the forecasting performance of the factor model against different machine learning techniques when predicting macroeconomic variables in the U.S. (FRED-MD). We find that while the factor model dominates at short horizons, yet it is surpassed by simple methods at longer horizons, with results varying across different macroeconomic categories. Finally, the third chapter proposes a hybrid model combining factor models and largedimensional regularized regressions for intra-daily volume prediction in large panels of stocks. Applied to the STOXX 600 Index, our results demonstrate its superior performance over traditional univariate models.
ca
dc.description.abstract
Esta tesis comprende tres capítulos sobre pronóstico econométrico, con aplicaciones a la macroeconomía y las finanzas. El primer capítulo presenta un procedimiento de prueba estadística para evaluar la capacidad predictiva superior (en inglés, SPA) en ambientes inestables. Por lo tanto, permite detectar si la superioridad de un modelo es variable en el tiempo. Aplicado a predicciones de riesgo a la baja para la economía de EE. UU., revela que el método comúnmente utilizado en la literatura (una regresión cuantil con condiciones financieras) presenta una heterogeneidad sustancial en el tiempo. En el segundo capítulo, presentamos una variante de la prueba estadística SPA estándar que evalúa la capacidad predictiva de un único método en contra de muchas alternativas al predecir un panel de series temporales. Nuestro análisis empírico evalúa la performance del modelo de factores contra diferentes técnicas de aprendizaje automático al predecir variables macroeconómicas en los EE. UU. (FRED-MD). Encontramos que si bien el modelo de factores domina en horizontes cortos, es superado por métodos simples en horizontes más largos, con resultados que varían entre diferentes categorías macroeconómicas. Finalmente, el tercer capítulo de le tesis propone un modelo híbrido de predicciones que combina modelos de factores y regresiones regularizadas de gran dimensión para la predicción de volumen intra-diario en grandes paneles de acciones. Aplicado al índice STOXX 600, nuestros resultados demuestran su rendimiento superior sobre modelos univariados tradicionales.
ca
dc.format.extent
182 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
ca
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Econometric forecasting
ca
dc.subject
Pronóstico econométrico
ca
dc.subject
Macroeconomics
ca
dc.subject
Macroeconomía
ca
dc.subject
Finance
ca
dc.subject
Finanzas
ca
dc.title
Essays in Econometric Forecasting with Applications to Macroeconomics and Finance
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
33
ca
dc.contributor.authoremail
ignacio.crespo@upf.edu
ca
dc.contributor.director
Brownlees, Christian
dc.embargo.terms
24 mesos
ca
dc.date.embargoEnd
2026-06-21T02:00:00Z
dc.rights.accessLevel
info:eu-repo/semantics/embargoedAccess
dc.description.degree
Programa de Doctorat en Economia, Finances i Empresa


Documents

This document contains embargoed files until 2026-06-21

This item appears in the following Collection(s)