Human Activity Recognition with Consumer Devices and Real-Life Perspectives

Author

Matey-Sanz, Miguel ORCID

Director

Granell, Carlos ORCID

Casteleyn, Sven ORCID

Tutor

Huerta, Joaquin ORCID

Date of defense

2024-10-30

Pages

305 p.



Department/Institute

Universitat Jaume I. Escola de Doctorat

Doctorate programs

Programa de Doctorat en Informàtica

Abstract

During the last decade, research on human activity recognition has grown due to its applications in diverse fields such as video surveillance, exercise monitoring or health monitoring systems. In the latter case, researchers are putting their efforts into using human activity recognition in monitoring elderly people, for example, for fall prevention and detection applications. Existing research usually has drawbacks regarding their requirements regarding sensing devices (e.g., cost, quantity, location). Therefore, research needs to keep these drawbacks in mind to have a real impact on society. This thesis addresses the abovementioned issue by focusing on the feasibility of the use of consumer devices such as smartphones and smartwatches, and cheap devices like microcontrollers, for human activity recognition and its application in real-life problems.

Keywords

Human activity recognition; Machine learning; Smartphones; Smartwatches; ESP32 microcontrollers; Timed Up & Go" test

Subjects

004 - Computer science

Knowledge Area

Ciències i tecnologia

Note

Doctorat internacional

Documents

This document contains embargoed files until 2025-10-30

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)