Human Activity Recognition with Consumer Devices and Real-Life Perspectives

Autor/a

Matey-Sanz, Miguel ORCID

Director/a

Granell, Carlos ORCID

Casteleyn, Sven ORCID

Tutor/a

Huerta, Joaquin ORCID

Fecha de defensa

2024-10-30

Páginas

305 p.



Departamento/Instituto

Universitat Jaume I. Escola de Doctorat

Programa de doctorado

Programa de Doctorat en Informàtica

Resumen

During the last decade, research on human activity recognition has grown due to its applications in diverse fields such as video surveillance, exercise monitoring or health monitoring systems. In the latter case, researchers are putting their efforts into using human activity recognition in monitoring elderly people, for example, for fall prevention and detection applications. Existing research usually has drawbacks regarding their requirements regarding sensing devices (e.g., cost, quantity, location). Therefore, research needs to keep these drawbacks in mind to have a real impact on society. This thesis addresses the abovementioned issue by focusing on the feasibility of the use of consumer devices such as smartphones and smartwatches, and cheap devices like microcontrollers, for human activity recognition and its application in real-life problems.

Palabras clave

Human activity recognition; Machine learning; Smartphones; Smartwatches; ESP32 microcontrollers; Timed Up & Go" test

Materias

004 - Informática

Área de conocimiento

Ciències i tecnologia

Nota

Doctorat internacional

Documentos

Este documento contiene ficheros embargados hasta el dia 30-10-2025

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)