Geometric Numerical Integration for Hamiltonian Monte Carlo and Extrapolation

Author

Shaw, Luke ORCID

Director

Casas, Fernando ORCID

Sanz-Serna, JM ORCID

Tutor

Casas, Fernando ORCID

Date of defense

2024-11-08

Pages

165 p.



Department/Institute

Universitat Jaume I. Escola de Doctorat

Doctorate programs

Programa de Doctorat en Ciències

Abstract

Hamiltonian ordinary differential equations (ODEs) occur in many applications (celestial mechanics, molecular dynamics, sampling) and their efficient numerical integration is thus of great interest. This thesis reviews the important concepts of classical numerical integration (stability and order) and their pitfalls and relevance when translated to geometric numerical integration, the alternative paradigm most appropriate to the study of numerical integrators for Hamiltonian problems, which possess the key geometric property of symplecticity. The success of integrators which conserve this property is elaborated through numerical experiments and the now well-established theory of backward error analysis, before various approaches to the optimal design of symplectic integrators are reviewed. The application of extrapolation methods to symplectic integration and a review of the operation of Hamiltonian Monte Carlo (HMC) and results characterising its performance round out the introduction. The remainder of the thesis consists of three chapters, each corresponding to a published research article - on generalised extrapolation methods, preconditioning for alternative integrators for HMC, and the optimal stability interval of a family of integrators for semilinear second-order ODEs - and a conclusion with proposals for future work stemming from the results of the thesis.

Keywords

Geometric Numerical Integration; Splitting methods; Hamiltonian Monte Carlo; Symplectic Integrators; Extrapolation methods; Numerical Analysis

Subjects

51 - Mathematics

Knowledge Area

Ciències

Note

Compendi d'articles, Doctorat internacional

Documents

2024_Tesis_Shaw_Luke Daniel.pdf

5.232Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/

This item appears in the following Collection(s)