A proposal to estimate the motion of an underwater vehicle through visual mosaicking

dc.contributor
Universitat de Girona. Departament d'Electrònica, Informàtica i Automàtica
dc.contributor.author
García Campos, Rafael
dc.date.accessioned
2011-04-12T17:35:12Z
dc.date.available
2002-03-05
dc.date.issued
2001-12-17
dc.date.submitted
2002-03-05
dc.identifier.isbn
8484581241
dc.identifier.uri
http://www.tdx.cat/TDX-0305102-131136
dc.identifier.uri
http://hdl.handle.net/10803/7716
dc.description.abstract
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. <br/><br/>The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed.<br/><br/>After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography.<br/><br/>Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances.<br/><br/>Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Underwater imaging
dc.subject
Estimació de trajectòries
dc.subject
Construcción de mosaicos
dc.subject
Processament d'image submarina
dc.subject
Mosaic construction
dc.subject
Procesamiento de imagen submarina
dc.subject
Trajectory estimation
dc.subject
Construcció de mosaics
dc.subject
Estimación de trajectorias
dc.title
A proposal to estimate the motion of an underwater vehicle through visual mosaicking
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
629
cat
dc.subject.udc
68
cat
dc.contributor.director
Cufí i Solé, Xavier
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
cat
dc.identifier.dl
Gi. 70-2002


Documentos

trgc.pdf

2.758Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)