Cellular Nonlinear Networks: optimized implementation on FPGA and applications to robotics

Author

Albó Canals, Jordi

Director

Riera Baburés, Jordi

Tutor

Vilasís Cardona, Xavier

Date of defense

2012-06-18

Legal Deposit

B.21427-2012

Pages

82 p.



Department/Institute

Universitat Ramon Llull. La Salle

Abstract

L'objectiu principal d'aquesta tesi consisteix a estudiar la factibilitat d'implementar un sensor càmera CNN amb plena funcionalitat basat en FPGA de baix cost adequat per a aplicacions en robots mòbils. L'estudi dels fonaments de les xarxes cel•lulars no lineals (CNNs) i la seva aplicació eficaç en matrius de portes programables (FPGAs) s'ha complementat, d'una banda amb el paral•lelisme que s'estableix entre arquitectura multi-nucli de les CNNs i els eixams de robots mòbils, i per l'altre banda amb la correlació dinàmica de CNNs i arquitectures memristive. A més, els memristors es consideren els substituts dels futurs dispositius de memòria flash per la seva capacitat d'integració d'alta densitat i el seu consum d'energia prop de zero. En el nostre cas, hem estat interessats en el desenvolupament d’FPGAs que han deixat de ser simples dispositius per a la creació ràpida de prototips ASIC per esdevenir complets dispositius reconfigurables amb integració de la memòria i els elements de processament general. En particular, s'han explorat com les arquitectures implementades CNN en FPGAs poden ser optimitzades en termes d’àrea ocupada en el dispositiu i el seu consum de potència. El nostre objectiu final ens ah portat a implementar de manera eficient una CNN-UM amb complet funcionament a un baix cost i baix consum sobre una FPGA amb tecnología flash. Per tant, futurs estudis sobre l’arquitectura eficient de la CNN sobre la FPGA i la interconnexió amb els robots comercials disponibles és un dels objectius d'aquesta tesi que se seguiran en les línies de futur exposades en aquest treball.


El objetivo principal de esta tesis consiste en estudiar la factibilidad de implementar un sensor cámara CNN con plena funcionalidad basado en FPGA de bajo coste adecuado para aplicaciones en robots móviles. El estudio de los fundamentos de las redes celulares no lineales (CNNs) y su aplicación eficaz en matrices de puertas programables (FPGAs) se ha complementado, por un lado con el paralelismo que se establece entre arquitectura multi -núcleo de las CNNs y los enjambres de robots móviles, y por el otro lado con la correlación dinámica de CNNs y arquitecturas memristive. Además, los memristors se consideran los sustitutos de los futuros dispositivos de memoria flash por su capacidad de integración de alta densidad y su consumo de energía cerca de cero. En nuestro caso, hemos estado interesados en el desarrollo de FPGAs que han dejado de ser simples dispositivos para la creación rápida de prototipos ASIC para convertirse en completos dispositivos reconfigurables con integración de la memoria y los elementos de procesamiento general. En particular, se han explorado como las arquitecturas implementadas CNN en FPGAs pueden ser optimizadas en términos de área ocupada en el dispositivo y su consumo de potencia. Nuestro objetivo final nos ah llevado a implementar de manera eficiente una CNN-UM con completo funcionamiento a un bajo coste y bajo consumo sobre una FPGA con tecnología flash. Por lo tanto, futuros estudios sobre la arquitectura eficiente de la CNN sobre la FPGA y la interconexión con los robots comerciales disponibles es uno de los objetivos de esta tesis que se seguirán en las líneas de futuro expuestas en este trabajo.


The main goal of this thesis consists in studying the feasibility to implement a full-functionality CNN camera sensor based on low-cost FPGA device suitable for mobile robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been complemented, on one side with the parallelism established between multi-core CNN architecture and swarm of mobile robots, and on the other side with the dynamics correlation of CNNs and memristive architectures. Furthermore, memristors are considered the future substitutes of flash memory devices because of its capability of high density integration and its close to zero power consumption. In our case, we have been interested in the development of FPGAs that have ceased to be simple devices for ASIC fast prototyping to become complete reconfigurable devices embedding memory and processing elements. In particular, we have explored how the CNN architectures implemented on FPGAs can be optimized in terms of area occupied on the device or power consumption. Our final accomplishment has been implementing efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA based on flash technology. Therefore, further studies on an efficient CNN architecture on FPGA and interfacing it with commercially-available robots is one of the objectives of this thesis that will be followed in the future directions exposed in this work.

Keywords

CNN; XNC; FPGA; Robots; Visió artificial; Electrònica programable; navegació; xarxa neuronal; eixam de robots; eficiència; poc consum; baix cost; visión artificial; electrónica programable; navegación; red neuronal; enjambre de robots; eficiencia; poco consumo; bajo coste; artificial vision; electronic programmable; navigation; neural networks; swarm of robots; efficiency; low-consumption; low-cost

Subjects

62 - Engineering

Knowledge Area

Les TIC i la seva gestió

Documents

Albo-Canals_Final_V.pdf

3.776Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)