Numerical modelling based on the multiscale homogenization theory. Application in composite materials and structures

Autor/a

Badillo Almaraz, Hiram

Director/a

Oller, S. (Sergio), 1955-

Fecha de defensa

2012-04-16

Depósito Legal

B. 25727-2012

Páginas

237 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria

Resumen

A multi-domain homogenization method is proposed and developed in this thesis based on a two-scale technique. The method is capable of analyzing composite structures with several periodic distributions by partitioning the entire domain of the composite into substructures making use of the classical homogenization theory following a first-order standard continuum mechanics formulation. The need to develop the multi-domain homogenization method arose because current homogenization methods are based on the assumption that the entire domain of the composite is represented by one periodic or quasi-periodic distribution. However, in some cases the structure or composite may be formed by more than one type of periodic domain distribution, making the existing homogenization techniques not suitable to analyze this type of cases in which more than one recurrent configuration appears. The theoretical principles used in the multi-domain homogenization method were applied to assemble a computational tool based on two nested boundary value problems represented by a finite element code in two scales: a) one global scale, which treats the composite as an homogeneous material and deals with the boundary conditions, the loads applied and the different periodic (or quasi-periodic) subdomains that may exist in the composite; and b) one local scale, which obtains the homogenized response of the representative volume element or unit cell, that deals with the geometry distribution and with the material properties of the constituents. The method is based on the local periodicity hypothesis arising from the periodicity of the internal structure of the composite. The numerical implementation of the restrictions on the displacements and forces corresponding to the degrees of freedom of the domain's boundary derived from the periodicity was performed by means of the Lagrange multipliers method. The formulation included a method to compute the homogenized non-linear tangent constitutive tensor once the threshold of nonlinearity of any of the unit cells has been surpassed. The procedure is based in performing a numerical derivation applying a perturbation technique. The tangent constitutive tensor is computed for each load increment and for each iteration of the analysis once the structure has entered in the non-linear range. The perturbation method was applied at the global and local scales in order to analyze the performance of the method at both scales. A simple average method of the constitutive tensors of the elements of the cell was also explored for comparison purposes. A parallelization process was implemented on the multi-domain homogenization method in order to speed-up the computational process due to the huge computational cost that the nested incremental-iterative solution embraces. The effect of softening in two-scale homogenization was investigated following a smeared cracked approach. Mesh objectivity was discussed first within the classical one-scale FE formulation and then the concepts exposed were extrapolated into the two-scale homogenization framework. The importance of the element characteristic length in a multi-scale analysis was highlighted in the computation of the specific dissipated energy when strain-softening occurs. Various examples were presented to evaluate and explore the capabilities of the computational approach developed in this research. Several aspects were studied, such as analyzing different composite arrangements that include different types of materials, composites that present softening after the yield point is reached (e.g. damage and plasticity) and composites with zones that present high strain gradients. The examples were carried out in composites with one and with several periodic domains using different unit cell configurations. The examples are compared to benchmark solutions obtained with the classical one-scale FE method.


En esta tesis se propone y desarrolla un método de homogeneización multi-dominio basado en una técnica en dos escalas. El método es capaz de analizar estructuras de materiales compuestos con varias distribuciones periódicas dentro de un mismo continuo mediante la partición de todo el dominio del material compuesto en subestructuras utilizando la teoría clásica de homogeneización a través de una formulación estándar de mecánica de medios continuos de primer orden. La necesidad de desarrollar este método multi-dominio surgió porque los métodos actuales de homogeneización se basan en el supuesto de que todo el dominio del material está representado por solo una distribución periódica o cuasi-periódica. Sin embargo, en algunos casos, la estructura puede estar formada por más de un tipo de distribución de dominio periódico. Los principios teóricos desarrollados en el método de homogeneización multi-dominio se aplicaron para ensamblar una herramienta computacional basada en dos problemas de valores de contorno anidados, los cuales son representados por un código de elementos finitos (FE) en dos escalas: a) una escala global, que trata el material compuesto como un material homogéneo. Esta escala se ocupa de las condiciones de contorno, las cargas aplicadas y los diferentes subdominios periódicos (o cuasi-periódicos) que puedan existir en el material compuesto; y b) una escala local, que obtiene la respuesta homogenizada de un volumen representativo o celda unitaria. Esta escala se ocupa de la geometría, y de la distribución espacial de los constituyentes del compuesto así como de sus propiedades constitutivas. El método se basa en la hipótesis de periodicidad local derivada de la periodicidad de la estructura interna del material. La implementación numérica de las restricciones de los desplazamientos y las fuerzas derivadas de la periodicidad se realizaron por medio del método de multiplicadores de Lagrange. La formulación incluye un método para calcular el tensor constitutivo tangente no-lineal homogeneizado una vez que el umbral de la no-linealidad de cualquiera de las celdas unitarias ha sido superado. El procedimiento se basa en llevar a cabo una derivación numérica aplicando una técnica de perturbación. El tensor constitutivo tangente se calcula para cada incremento de carga y para cada iteración del análisis una vez que la estructura ha entrado en el rango no-lineal. El método de perturbación se aplicó tanto en la escala global como en la local con el fin de analizar la efectividad del método en ambas escalas. Se lleva a cabo un proceso de paralelización en el método con el fin de acelerar el proceso de cómputo debido al enorme coste computacional que requiere la solución iterativa incremental anidada. Se investiga el efecto de ablandamiento por deformación en el material usando el método de homogeneización en dos escalas a través de un enfoque de fractura discreta. Se estudió la objetividad en el mallado dentro de la formulación clásica de FE en una escala y luego los conceptos expuestos se extrapolaron en el marco de la homogeneización de dos escalas. Se enfatiza la importancia de la longitud característica del elemento en un análisis multi-escala en el cálculo de la energía específica disipada cuando se produce el efecto de ablandamiento. Se presentan varios ejemplos para evaluar la propuesta computacional desarrollada en esta investigación. Se estudiaron diferentes configuraciones de compuestos que incluyen diferentes tipos de materiales, así como compuestos que presentan ablandamiento después de que el punto de fluencia del material se alcanza (usando daño y plasticidad) y compuestos con zonas que presentan altos gradientes de deformación. Los ejemplos se llevaron a cabo en materiales compuestos con uno y con varios dominios periódicos utilizando diferentes configuraciones de células unitarias. Los ejemplos se comparan con soluciones de referencia obtenidas con el método clásico de elementos finitos en una escala.

Palabras clave

homogenization method; composite materials; multi-scale analysis; unit-cell; multi-domain decomposition

Materias

620 - Ensayo de materiales. Materiales comerciales. Economía de la energía

Documentos

THBA1de1.pdf

6.179Mb

 

Derechos

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)