Environment-Independent Moving Cast Shadow Suppression in Video Surveillance

dc.contributor
Universitat Autònoma de Barcelona. Departament de Ciències de la Computació
dc.contributor.author
Amato, Ariel
dc.date.accessioned
2012-12-18T14:21:19Z
dc.date.available
2012-12-18T14:21:19Z
dc.date.issued
2012-03-16
dc.identifier.isbn
9788449031847
dc.identifier.uri
http://hdl.handle.net/10803/96787
dc.description.abstract
Aquesta tesi està orientada a la detecció i l’eliminació d’ombres en moviment. Les ombres es poden definir com una part de l’escena que no està directament il·luminada, pel fet que la font d’il·luminació es troba obstruïda per un o diversos objectes. Sovint, les ombres en moviment que es troben en imatges o en seqüències de vídeo són causa d’errors en l’anàlisi del comportament humà. Això es deu a que les ombres poden causar una degradació dels resultats dels algorismes de processament d’imatges aplicats a: detecció d’objectes, segmentació, vídeo vigilància o en propòsits similars. En aquesta tesi primer s’analitzen exhaustivament els mètodes de detecció d’ombres en moviment, i després amb l’objectiu de compensar les seves limitacions es proposa un nou mètode de detecció i eliminació d’aquest tipus d’ombres. El mètode proposat no fa servir informació a priori de l’escena, ni tampoc es restringeix a un tipus d’escena en concret. A més, el mètode proposat pot detectar tant ombres acromàtiques com també les cromàtiques, fins i tot quan hi ha camuflatge (és a dir, quan hi ha una forta similitud de color entre el foreground i l’ombra). Aquest mètode explota una propietat de constància local de color aconseguida a causa de la supressió de la reflectància en les regions amb ombres. Per detectar les regions amb ombres en una escena, els valors de la imatge del background són dividits pels valors de la imatge actual, tots dos en l’espai de color RGB. Al llarg de la tesi es demostra com aquesta divisió serà utilitzada per detectar segments amb gradients baixos i constants, que al seu torn s’utilitzen per distingir entre ombres i foregrounds. Els resultats experimentals duts a terme sobre base de dades públiques mostren un rendiment superior dels mètodes proposats en aquesta Tesi, comparat amb els mètodes actuals més sofisticats de detecci ó i eliminació d’ombres. A més els resultats demostren que el mètode proposat és robust i precís a l’hora detectar diferents tipus d’ombres en diferents tipus de vídeos.
cat
dc.description.abstract
This thesis is devoted to moving shadows detection and suppression. Shadows could be defined as the parts of the scene that are not directly illuminated by a light source due to obstructing object or objects. Often, moving shadows in images sequences are undesirable since they could cause degradation of the expected results during processing of images for object detection, segmentation, scene surveillance or similar purposes. In this thesis first moving shadow detection methods are exhaustively overviewed. Beside the mentioned methods from literature and to compensate their limitations a new moving shadow detection method is proposed. It requires no prior knowledge about the scene, nor is it restricted to assumptions about specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene the values of the background image are divided by values of the current frame in the RGB color space. In the thesis how this luminance ratio can be used to identify segments with low gradient constancy is shown, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of the proposed method compared with the most sophisticated state-of-the-art shadow detection algorithms. These results show that the proposed approach is robust and accurate over a broad range of shadow types and challenging video conditions.
eng
dc.format.extent
128 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Autònoma de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
shadow removel
dc.subject
color segmentazion
dc.subject
motion detectio
dc.subject.other
Tecnologies
dc.title
Environment-Independent Moving Cast Shadow Suppression in Video Surveillance
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
cat
dc.contributor.authoremail
aameto@cvc.uab.es
dc.contributor.director
Mozerov, Mikhail G.
dc.contributor.codirector
Gonzàlez i Sabaté, Jordi
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B-2967-2013


Documents

aa1de1.pdf

2.111Mb PDF

This item appears in the following Collection(s)