Universitat Autònoma de Barcelona. Departament de Ciències de la Computació
El càncer de còlon és la quarta causa més comuna de mort per càncer en el món, havent al voltant de 143.460 nous casos el 2012, segons dades de l’American Cancer Society. La taxa de mortalitat d’aquest càncer depèn de l’etapa en què sigui detectat, decreixent des de taxes majors del 95% en les primeres etapes a taxes inferiors al 35% en les etapes quarta i cinquena, la qual cosa demostra la necessitat d’una exploració preco¸c del còlon. Durant l’exploració, el metge busca creixements adenomatosos, que es coneixen sota el nom de pòlips, per tal d’esbrinar el seu nivell de desenvolupament. Hi ha diverses tècniques per a l’exloració del còlon, però la colonoscòpia és considerada encara avui com estàndard de facto, encara que presenta alguns inconvenients com una elevada taxa de errors. La nostra contribució està enquadrada dins del camp de sistemes intel·ligents per a la colonoscòpia [13] i té com a objectiu el desenvolupament de mètodes de localització i segmentació de pòlips basant-se en models d’aparen¸ca. Definim la localització de pòlips com el mètode pel qual donada una imatge d’entrada es proporciona com a sortida una altra imatge on es assenyalen les àrees de la imatge on és més probable trobar un pòlip. Per altra banda, la segmentació té com a objectiu definir la regió concreta de la imatge on es troba el pòlip. Per tal de desenvolupar ambdós mètodes s’ha comen¸cat desenvolupant un model d’aparen¸ca per a pòlips, el qual defineix un pòlip com una estructura limitada per valls en la imatge de escala de gris. La novetat de la nostra contribució rau en el fet que incloem en el nostre model altres elements de l’escena endoluminal, com els reflexos especulars o els gots sanguinis, que demostren tenir un impacte en el rendiment global dels nostres mètodes i en elements derivats del procés de formació de la imatge com l’interlacing. Tenint això en compte, definim una imatge de profunditat de valls que integra la sortida del detector de valls amb un gradient morfològic, afegint-hi els altres elements de l’escena endoluminal. Per desenvolupar el nostre mètode de localització de pòlips capturem la informació de la imatge de profunditat de valls amb la finalitat de crear mapes d’energia. Per obtenir la segmentació del pòlip també fem servir aquests mapes de energia per guiar el procés. Els nostres mètodes arriben resultats prometedors tant en localització com a segmentació de pòlips. Per a validar la metodologia emprada, presentem un experiment que compara el nostre mètode amb observacions fetes per metges obtingudes mitjan ¸cant un dispositiu de eye-tracking. Els resultats mostren que el rendiment de la contribució d’aquesta Tesi és comparable a l’obtingut a partir de les observacions dels metges, la qual cosa indica el potencial de la nostra proposta en futurs sistemes intel·ligents de colonoscòpia.
El cáncer de colon es la cuarta causa más común de muerte por cáncer en el mundo, presentando alrededor de 143.460 nuevos casos en 2012, según datos estimados por la American Cancer Society. La tasa de mortalidad del cancer de colon depende de la etapa en que éste es detectado, decreciendo desde tasas mayores del 95% en las primeras etapas a tasas inferiores al 35% en las etapas cuarta y quinta, lo cual es muestra de la necesidad de una exploración temprana del colon. Durante la exploración el médico busca crecimientos adenomatosos que se conocen bajo el nombre de pólipos, con el fin de averiguar su nivel de desarrollo. Existen varias técnicas para la exloración del colon pero la colonoscopia está considerada aún hoy en d´ıa como estandar de facto, aunque presenta algunos inconvenientes como la tasa de fallos. Nuestra contribución, encuadrada dentro del campo de sistemas inteligentes para la colonoscopia, tiene como objetivo el desarrollo de métodos de localización y segmentación de pólipos basándose en un model de apariencia para los pólipos. Definimos localización de pólipos como el método por el cual dada una imagen de entrada se proporciona como salida donde se se˜nalan las áreas de la imagen donde es más probable encontrar un pólipo. La segmentación de pólipos tiene como objetivo definir la región concreta de la imagen donde está el pólipo. Con el fin de desarrollar ambos métodos se ha comenzado desarrollando un modelo de apariencia para pólipos, el cual define un pólipo como una estructura limitada por valles en la imagen de escala de gris. Lo novedoso de nuestra contribución radica en el hecho de que incluimos en nuestro modelo otros elementos de la escena endoluminal tales como los reflejos especulares o los vasos sangu´ıneos que tienen un impacto en el rendimiento global de nuestros métodos as´ı como elementos derivados del proceso de formación de la imagen, como el interlacing. Teniendo esto en cuenta definimos nuestra imagen de profundidad de valles que integra la salida del detector de valles con el gradiente morfológico, a˜nadiendo asimismo la presencia de los ya mencionados otros elementos de la escena endoluminal. Para desarrollar nuestro método de localización de pólipos acumulamos la información que la imagen de profundidad de valles proporciona con el fin de crear mapas de energ´ıa. Para obtener la segmentación del pólipo también usamos información de los mapas de energ´ıa para guiar el proceso. Nuestros métodos alcanzan resultados prometedores tanto en localización como en segmentación de pólipos. Con el fin de valdiar nuestros métodos presentamos también un experimento que compara nuestro método con las observaciones de los médicos, obtenidas mediante un dispositivo eye-tracker. Los resultados muestran que nuestros m´etodos son cercanos a las observaciones de los médicos, lo cual indica el potencial de los mismos de cara a ser incluidos en futuros sistemas inteligentes para la colonoscopia.
Colorectal cancer is the fourth most common cause of cancer death worldwide, with about 143.460 new cases expected in 2012 by recent estimates of the American Cancer Society. Colon cancerís survival rate depends on the stage in which it is detected, decreasing from rates higher than 95% in the first stages to rates lower than 35% in stages IV and V, hence the necessity for a early colon screening. In this process physicians search for adenomatous growths known as polyps, in order to assess their degree of development. There are several screening techniques but colonoscopy is still nowadays the gold standard, although it has some drawbacks such as the miss rate. Our contribution, in the field of intelligent system for colonoscopy, aims at providing a polyp localization and a polyp segmentation system based on a model of appearance for polyps. In this sense we define polyp localization as a method which given an input image identifies which areas of the image are more likely to contain a polyp. Polyp segmentation aims at selecting the region of the image that contains a polyp. In order to develop both methods we have started by defining a model of appearance for polyps, which defines a polyp as enclosed by intensity valleys. The novelty of our contribution resides on the fact that we include in our model other elements from the endoluminal scene such as specular highlights and blood vessels, which have an impact on the performance of our methods and also other elements that appear as a result of image formation, such as interlacing. Considering this we define our novel Depth of Valleys image which integrates valley information with the output of the morphological gradient and also takes into account the presence of the before mentioned elements of the endoluminal scene. In order to develop our polyp localization method we accumulate the information that the Depth of Valleys image provides in order to generate accumulation energy maps. In order to obtain polyp segmentation we also use information from the energy maps to guide the process. Our methods achieve promising results in polyp localization and segmentation. In order to validate our methods we also present an experiment which compares the output of our method with physicianís observations captured via an eye-tracking device. The results show to be close to physicianís observations which point out a potentially inclusion of our methods as part of a future intelligent system for colonoscopy.
Polyp; Polyp segmentation; Medical imaging
62 - Enginyeria. Tecnologia
Tecnologies
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.