Universitat Autònoma de Barcelona. Departament de Bioquímica i Biologia Molecular
El Océano Ártico está caracterizado por la presencia de una cobertura de hielo marino, cuya extensión varía entre verano e invierno. El hielo marino incorpora material particulado y especies químicas asociadas (nutrientes, metales, contaminantes, etc.) durante su formación en las plataformas continentales. A lo largo de su ciclo de vida, diversos procesos físicos, químicos y biológicos determinan la concentración tanto de sedimentos del hielo marino (SIS) como de las especies químicas atrapados a ellos. Durante su deriva desde la costa a la cuenca ártica, el hielo intercepta/acumula especies químicas procedentes de la atmosfera, aunque SIS también puede incorporar especies químicas disueltas del agua superficial. Finalmente, durante el deshielo las especies químicas y SIS transportados son liberados al agua. Así, el hielo marino se convierte en un importante agente de transporte y distribución. Sin embargo, se desconoce cual es la eficiencia de intercepción de flujos atmosféricos, el origen tanto de SIS como de los radionúclidos incorporados, el tiempo de transito del hielo en el Océano ártico, así como la importancia del transporte de especies químicas y SIS y su liberación en las zonas de ablación. Para responder a dichas preguntas, un grupo de radionúclidos naturales (7Be, 210Po-210Pb y 234Th) y artificiales (137Cs, 239,240Pu), caracterizados por tener sus fuentes bien definidas y diferente vidas medias, fueron analizados en muestras de precipitación, hielo marino, agua superficial y por debajo del hielo, SIS muestreadas durante ARK XXII/2 (2007) a lo largo de la Cuenca ártica central. La distribución de 7Be muestra un enriquecimiento en el hielo marino con respecto al agua superficial. Puesto que todo 7Be incorporado el hielo durante su formación se ha desintegrado durante su deriva, el flujo atmosférico aparece como la fuente más importante de 7Be en el hielo. Mediante un balance de masa se estimó que el hielo intercepta aproximadamente 30% del flujo atmosférico de 7Be. Esta estimación podría ser extrapolada para otras especies químicas atmosféricas, como nutrientes o contaminantes. Dado que el hielo intercepta/acumula 7Be y 210Pb durante su deriva, éstos también podrían ser arrastrados por SIS, y por tanto ser utilizados para estimar su tiempo de transito. La presencia de radionúclidos artificiales en SIS (240Pu/239Pu ratio atómica, en combinación con las actividades de 137Cs y 239,240Pu) permiten delimitar su origen geográfico. SIS procedentes del mar de Laptev y Kara tienen 240Pu/239Pu ratios atómicas inferiores al global fallout (0.18), mientras que SIS procedentes de las plataformas de Alaska presentan 240Pu/239Pu ratios atómicos superiores al global fallout. Los datos muestran que la mayoría de SIS en la Cuenca Euroasiática vienen de las plataformas siberianas, en concordancia con los análisis de retro-trayectorias y los principales patrones de deriva. El uso de radionúclidos en SIS como trazadores para estimar el tiempo de transito y el origen del hielo, juntamente con el hecho que SIS no contenga 234Thxs o que sólo una pequeña fracción del 7Be en SIS sea explicada por el arrastre del agua superficial si todo 210Pb en SIS viene de esta fuente, hace que la deposición atmosférica sea la principal fuente de radionúclidos en SIS. La relevancia del hielo como agente de transporte y fuente de radionúclidos en las áreas de deshielo, como el Estrecho de Fram, se demuestra en que los flujos anuales de 7Be disuelto en hielo (67±55Bq·m-2·y-1) son comparables a los input atmosféricos en esta región (113-131Bq·m-2·y-1). Además, el flujo anual de SIS en este área, calculado usando el balance de masa de 7Be y el flujo promedio anual de área de hielo a través éste, es de media 240(4.5-1700)·106 toneladas, comparable descargadas anualmente por los ríos árticos (115·106 toneladas).
The Arctic Ocean is characterized by being covered by sea ice with a large variability between summer and winter. Sea ice incorporates particles and associated chemical species (metals, nutrients, contaminants, etc.) during its formation mainly in the continental shelves, while dissolved solutes are excluded. Along the whole life cycle of sea ice, diverse physical, chemical and biological processes determine the concentration of the sea-ice sediments (SIS) and chemical species entrapped in it. During its drifts offshore to the central Arctic Basin, sea ice also intercepts/incorporates chemical species from the atmosphere although, SIS may also incorporate some chemical solute compounds from the surface waters. Eventually, transported chemical species and SIS, are released to the underlying water column during melting process. Thus, sea ice becomes an important transport and distribution agent. However, the interception efficiency of atmospheric fluxes by sea ice, the origin of the entrapped SIS and radionuclides, the transit times of sea ice in the Arctic Ocean, as well as the importance of the transport of chemical species and SIS and its release in the ablation area are all poorly understood. To address these questions, a suite of natural (7Be, 210Po-210Pb and 234Th) and artificial (137Cs, 239,240Pu) radionuclides, characterized to have well-known sources and different half-lives, were analysed in samples from precipitation, sea ice, surface water, water beneath ice and SIS collected during the ARK XXII/2 expedition in 2007 along the central Arctic. The distributions of 7Be showed enrichment in sea ice (129±90Bq·m-3) with respect to surface water (7.1±1.3Bq·m-3). Since any 7Be incorporated to sea ice during its formation has decayed during drift, the direct atmospheric flux appears as the most important source of 7Be in sea ice. A mass balance was used to calculate that sea ice intercepts about 30% of the 7Be atmospheric flux. This estimation may be extrapolated to other atmospheric chemical species, such as nutrients or contaminants. Given that 7Be and 210Pb are intercepted and accumulated during sea ice transit and may also scavenge by SIS, both radionuclides can be used to assess sea ice transit time. The presence of SIS indicates that ice floes are formed in continental shelves. The presence of artificial radionuclides in SIS (240Pu/239Pu atom ratio, in combination with 137Cs and 239,240Pu activity) allow constraining their geographical origin. SIS originating in the Laptev and Kara Seas has 240Pu/239Pu atom ratios lower than those imprinted by global fallout (0.18), while SIS originating from the Alaskan shelf present 240Pu/239Pu atom ratios greater than global fallout. Data showed that most of the SIS in the Eurasian Basin originated from the Siberian shelves, in agreement with back-trajectory analyses and main drift patterns. The evidence of using 7Be/210Pb ratio, 137Cs and 239,240Pu in SIS as tracers to estimate sea ice transit time and origin, and the fact that SIS did not contain 234Thxs or that a small fraction of 7Be activity in SIS is explained by scavenging of seawater if all 210Pb in SIS does, make the atmospheric deposition the main source of radionuclides in SIS. The relevance of sea ice as a significant transport and source of radionuclides in melting areas, such as the Fram Strait, is reflected in the annual fluxes of dissolved 7Be carried by sea ice (67±55Bq·m-2·y-1), which are comparable to atmospheric inputs in this region (113-131Bq·m-2·y-1). In addition, the annual mass flux of SIS at the Fram Strait, assessed using a 7Be mass balance and the mean annual ice area efflux through it, is on average 240 (4.5-1700)·106 tons, value comparable to 115·106 tons discharged annually by Arctic rivers.
Radionuclides; Sea ice; Archia ocean
55 - Geologia. Meteorologia
Ciències Experimentals
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.