Invariant manifolds and bifurcations for one-dimensional and two-dimensional dissipative maps


Autor/a

Tatjer i Montaña, Joan Carles

Director/a

Simó, Carles

Data de defensa

1990-03-01

ISBN

9788469226247

Dipòsit Legal

B.22959-2009



Departament/Institut

Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi

Resum

It is known that for the study of continuous dynamical systems the discret case plays an important role because, with it we can study the continuous one by using the Poincaré return map. In the discret case we can distinguish between conservative maps (or area preserving maps, in the case of flows living on a 3-dimensional manifold) and non conservative maps. Among the last ones, there are the dissipative maps. Two of the main subjects of the study of dissipative maps are: the existence or not of attracting periodic orbits and the possible existence of strange attractors -that is, attractors that are neither periodic orbits nor invariant curves, which are minimal and contain a dense orbit. Moreover, these attractors can have sensitive dependence on the initial conditions, or have an absolutely continuous invariant measure. On the other hand there exists a transition between these two behaviours: the so-called flip or period doubling bifurcation cascade. After the final of this cascade (in a suitable set of parameters), strange attractors can appear, and also more attracting periodic orbits.<br/><br/>This doctoral dissertation is divided in four chapters:<br/><br/>In the first one we study the dynamics of the so called logistic map; more specifically, we study first fold and flip bifurcations of this family, giving analytical expressions of the parameter values for which they occur. In the second chapter, we consider the Hénon map with strong dissipation. In the third chapter we study the Newhouse phenomenon. To this end we prove a more complete version of the phenomenon than others proved before, in which we show the existence of generic saddle-node and flip bifurcations, for parameters close to the parameter of homoclinic tangency. In chapter four we study the behaviour of the codimension one and two bifurcations in one and two dimensional families of maps. To do this, we consider one-parameter families of diffeomorphisms, to study saddle-node and flip bifurcations, and two-parameter families of dissipative diffeomorphisms, to study cusps and codimension two flips.

Paraules clau

Mapa logístic; Cas discret (Matemàtiques); Sistemes dinàmics continus

Matèries

51 - Matemàtiques

Àrea de coneixement

Ciències Experimentals i Matemàtiques

Documents

JCTM_TESI.pdf

7.305Mb

 

Drets

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Aquest element apareix en la col·lecció o col·leccions següent(s)