Computational studies on host-guest catalysis

Author

Goehry, Charles

Director

Maseras Cuní, Feliu

Codirector

Besora Bonet, Maria

Date of defense

2014-07-09

Legal Deposit

T 1545-2014

Pages

176 p.



Department/Institute

Universitat Rovira i Virgili. Departament de Química Física i Inorgànica

Abstract

La química supramolecular és la química dels enllaços no covalents. L'objectiu dels investigadors en aquest camp és entendre i predir el comportament i la interacció dels acoblaments de grans dimensions moleculars. Aquest treball se centra en l'estudi de dos sistemes supermoleculars independents que promouen una reacció clic en el seu nucli. Aquests sistemes són: un cucurbit[6]uril macrocicle i un calixerè autocomplementari que s'acobla en una càpsula. Presenten un gran espai intern capaç d'atrapar espècies reactives. El principal efecte de l'agregació és l'eliminació parcial de constriccions entròpiques, promovent així les reaccions mencionades. A més, en aquests dos casos, la inhibició del producte s'observa experimentalment. Es va realitzar un test de mètodes incloent: Mecànica Molecular, DFT/MM, DFT/ES, DFT i DFT -D. Els resultats mostren clarament que el DFT-D supera tots els altres mètodes, tot i que per als sistemes molt grans requereix més mitjans computacionals. B97D s'ha seleccionat amb M06 i una base de 6-31G* sembla suficient. Els errors BSSE són molt grans i cal tenir-los en compte, mentre que una solvatació implícita és satisfactòria. Havent identificat els mètodes adequats per a l'estudi d'aquests dos conjunts, calculem un gran conjunt de punts estàtics que engloba les possibles alteracions pot experimentar cada sistema. Amb aquestes dades podem construir una xarxa de reacció. Reactius, productes, complexos o conformacions estan relacionats. Seguint aquest esquema, es calcula un conjunt de constants de velocitat per al seu ús en un programa de cinètica. A més, incorporem processos controlats per difusió. El resultat mostra l'evolució global del sistema a través del temps, per exemple, les concentracions dels diferents intermedis i el més important: la formació gradual del producte atrapat. Aquest mètode ens permet reproduir els resultats experimentals i evita el sobrecost (temps/mitjans) de la dinàmica molecular.


La química supramolecular es la química de los enlaces no covalentes. El objetivo de los investigadores en este campo es entender y predecir el comportamiento y la interacción de ensamblajes de gran tamaño molecular. Mi estudio se centra en dos sistemas independientes supermoleculares que promueven una reacción click en su núcleo. Estos sistemas son: un cucúrbito[6]uril y un calixareno autoasemblado que forma una cápsula molecular. Ambos presentan un espacio interno grande capaz de atrapar especies reactivas. El principal efecto de la agregación es la eliminación parcial del efecto de la entropía, promoviendo así dichas reacciones; en estos dos casos, se queda en la supermolécula, bloqueando las posibilidades de catálisis. Realizamos una serie de pruebas de los métodos incluyendo: Mecánica Molecular, DFT/MM, DFT/SE, DFT y DFT-D. Los resultados muestran claramente que DFT-D supera a todos los otros métodos, a pesar de que para sistemas muy grandes es muy exigente en términos de recursos computacionales. Se ha seleccionado B97D y una base 6-31G* parece suficiente. Los errores de BSSE son muy grandes y deben ser tomados en cuenta, mientras que una solvatación implícita es satisfactoria. Habiendo identificado los métodos adecuados para el estudio de esos dos complejos, calculamos un gran conjunto de puntos estáticos que engloba las posibles alteraciones que cada sistema puede experimentar. Con estos datos podemos construir una red de reacción. Reactivos, productos, complejos o conformaciones están relacionados. Siguiendo este esquema, se calcula un conjunto de constantes de velocidad para su uso en un programa de cinética. Además, incorporamos procesos controlados por difusión. El resultado muestra la evolución del sistema global a través del tiempo, es decir, las concentraciones de los diferentes intermediarios y lo más importante: la formación gradual del producto atrapado. Este método nos permite reproducir los resultados experimentales y no se basa en métodos de dinámica molecular.


Supramolecular chemistry is the chemistry of non-covalent bonds. Understanding and predicting the behaviour and interplay of large molecular assemblies is the goal of researchers in the field. The present work is focused on the study of two independant supermolecular systems that both promote a click reaction in their core. These systems are (i) a cucurbit[6]uril (CB6) macrocycle and (ii) a self-complementary calixarene that assembles into a capsule. They exhibit a large inner space capable of trapping reactive species. The main effect of aggregation is the partial removal of entropic contraints, thus promoting the formentionned reactions. Also, in those two cases, product inhibition is experimentally observed. We performed a benchmark of methods including from Molecular Mechanics, DFT/MM, DFT/S-E, DFT y DFT-D. The results clearly show DFT-D outperforms all the other methods, although it is computationally expensive for the very large systems in hand. B97D has been selected over M06 and a basis set of 6-31G* appears sufficient. BSSE errors are very large and need to be taken into account, while single-point solvation is satisfactory. Having identified suitable methods for the study of those two assemblies, we compute a large set of stationary points that encompasses the possible alterations each system can undergo. With this data, we build a reaction network. Reactants, product, complexes or conformations (vertices) are related by reactions (edges). Following this scheme, we compute a set of rate constants to use in a kinetic program. Also, we incorporate diffusion-controlled processes. The output shows the evolution of the global system over time, for example the concentrations of the different intermediates and more importantly the gradual formation of the trapped product. This method allows us to reproduce experimental results and does not rely on expensive molecular dynamics.

Keywords

Supramolecular; Química; Cinètica; Computacional; Catàlisi; Cinética; Catálisis; Chemistry; Kinetics; Computational; Catalysis

Subjects

544 - Physical chemistry

Documents

thesis.pdf

13.68Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)