The wiring diagram of antennal lobe and mapping a brain circuit that controls chemotaxis behavior in the Drosophila larva

Author

Khandelwal, Avinash

Director

Louis, Matthieu

Date of defense

2017-01-19

Pages

102 p.



Department/Institute

Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

Doctorate programs

Programa de doctorat en Biomedicina

Abstract

Drosophila larvae present unique opportunity for anatomical and functional mapping of their nervous system because of features such as numerical simplicity of neurons its nervous system is composed of, and ability to exhibit quantifiable behaviors such as chemotaxis. Here, we mapped entire antennal lobe of larval Drosophila with one of its circuits responsible for controlling sensorimotor transformation in lateral horn (LH) (higher brain) through a single brain descending neuron using electron microscopic 3D reconstruction. In antennal lobe, we reported a canonical circuit with uniglomerular projection neurons (uPNs), working to relay gain-controlled ORN activity to higher brain centers like Mushroom body and lateral horn. We also found a parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically organized local neurons (LNs) selectively integrating signal from multiple ORNs at the first synapse with LN-LN connectivity putatively implementing gain control mechanism that can potentially switch from computing distinguished odor signals through panglomerular inhibition to allowing system to respond to faint aversive odor in an environment rich with strong appetitive odors. We also reconstructed and studied one of the olfactory connected circuits in the LH that was found to be influencing chemotaxis behavior in larva through a single brain descending neuron, PVM027. We found that this neuron was responsible in controlling stop response of chemotaxis behavior. EM reconstruction revealed its connection with variety of motor systems and SEZ descending neurons in the VNC. Connections were revealed with the peristaltic wave propagation circuit of larva, and PVM027 was found to be implementing stop by terminating and ceasing the origin of forward peristaltic waves.


Las larvas de Drosophila ofrecen una oportunidad única para el mapeo anatómico y funcional de su sistema nervioso debido a propiedades como la simplicidad numérica de neuronas que componen su sistema nervioso y su habilidad de exhibir comportamientos cuantificables como la quimiotaxis. En este estudio hemos mapeado el lóbulo antenal de la larva de Drosophila con uno de sus circuitos responsable de controlar la transformación sensorial-motora en el asta lateral (LH) (cerebro superior) a través de una sola neurona descendiente usando la reconstrucción 3D para microscopia electrónica. Hemos presentado, en el lóbulo antenal, un circuito canónico con proyecciones neuronales uniglomerulares (uPNs) responsables de transmitir aumentos controlados de actividad desde sus ORN* hasta centros superiores del cerebro como el cuerpo fungiforme y el asta lateral del protocerebro. Hemos descubierto también un circuito paralelo formado por neuronas con proyecciones multiglomerulares (mPNs) y neuronas locales (Lns), organizadas jerárquicamente, que integran selectivamente señales desde múltiples ORNs a nivel de primera sinapsis con conectividad LN-LN implementando aparentemente un mecanismo de aumento de control que potencialmente puede intercambiar señales olfativas distintas computacionalmente a través de inhibición panglomerular permitiendo al sistema responder a olores vagamente aversivos en un ambiente rico en fuertes olores apetitosos. También hemos reconstruido y estudiado uno de los circuitos olfativos que conectan con el LH conocido por influenciar la quimiotaxis de la larva a través de un sola neurona cerebral descendiente, la PVM027. Hemos descubierto que dicha neurona es la responsable de controlar la respuesta stop en el comportamiento de quimiotaxis. La reconstrucción por EM revela su conexión con una variedad de sistemas motores así como neuronas descendientes SEZ en el VNC. Observamos dichas conexiones gracias al circuito de propagación de onda peristáltica de la larva, y descubrimos que la PVM027 implementa la señal de stop terminando e interrumpiendo el origen de la onda peristáltica.

Keywords

Chemotaxis; Antennal lobe; Drosophila; Electron Microscopy; Connectome; Quimiotaxis; Lóbulo antennal; Drosophila; Microscopia electronica; Conectoma

Subjects

616.8 - Neurology. Neuropathology. Nervous system

Documents

tak_v2.pdf

2.846Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)