dc.contributor
Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
dc.contributor.author
Grau Leguia, Marc
dc.date.accessioned
2019-04-10T12:01:09Z
dc.date.available
2019-04-10T12:01:09Z
dc.date.issued
2019-03-15
dc.identifier.uri
http://hdl.handle.net/10803/666631
dc.description.abstract
Un problema principal de la ciència de xarxes és com reconstruir (inferir) la topologia d’una xarxa real a partir de senyals mesurades de les seves unitats internes. Entendre la arquitectura d’una xarxa complexa és clau, no només per comprendre el seu funcionament, sinó també per predir i controlar el seu comportament. Els mètodes actualment disponibles es centren principalment en la detecció d’enllaços de xarxes no direccio- nals i sovint requereixen suposicions fortes sobre el sistema. Tanmateix, molts d’aquests mètodes no es poden aplicar a xarxes amb connexions direccionals. Per abordar aquest problema, en aquesta tesis ens centrarem en la inferència de xarxes direccionals. Concretament, desenvolupem un mètode de reconstrucció de xarxes basat en models que combina estadístiques de correlacions de derivades amb recuit simulat. A més, desenvolupem un mètode de reconstrucció basat en dades cimentat en una mesura d’interpedendència no lineal. Aquest mètode permet inferir la topologia de xarxes direccionals d’oscil.ladors caòtics de Lorenz per un subordre de la força d’acoblament i la densitat de la xarxa. Finalment, apliquem el mètode basat en dades a gravacions electroencefalogràfiques d’un pacient amb epilèpsia. Les xarxes cerebrals funcionals obtingu- des a partir d’aquest mètode són coherents amb la informació mèdica disponible.
en_US
dc.description.abstract
Un problema principal de la ciencia de redes es cómo reconstruir (inferir) la topología de una red real usando la señales medidas de sus unidades internas. Entender la arquitectura de redes complejas es clave, no solo para entender su funcionamiento pero también para predecir y controlar su comportamiento. Los métodos existentes se focalizan en la detección de redes no direccionales y normalmente requieren fuertes suposicio- nes sobre el sistema. Sin embargo, muchos de estos métodos no pueden ser aplicados en redes con conexiones direccionales. Para abordar este problema, en esta tesis estudiamos la reconstrucción de redes direccio- nales. En concreto, desarrollamos un método de reconstrucción basado en modelos que combina estadísticas de correlaciones de derivadas con recocido simulado. Además, desarrollamos un método basado en datos cimentado en una medida d’interdependencia no lineal. Este método permite inferir la topología de redes direccionales de osciladores caóticos de Lorenz para un subrango de la fuerza de acoplamiento y densidad de la red. Finalmente, aplicamos el método basado en datos a grabaciones electroencefalográficas de un paciente con epilepsia. Las redes cerebra- les funcionales obtenidas usando este método son consistentes con la información médica disponible.
en_US
dc.description.abstract
A foremost problem in network science is how to reconstruct (infer) the topology of a real network from signals measured from its internal units. Grasping the architecture of complex networks is key, not only to understand their functioning, but also to predict and control their behaviour. Currently available methods largely focus on the detection of links of undirected networks and often require strong assumptions about the system. However, many of these methods cannot be applied to networks with directional connections. To address this problem, in this doctoral work we focus at the inference of directed networks. Specifically, we develop a model-based network reconstruction method that combines statistics of derivative-variable correlations with simulated annealing. We furthermore develop a data-driven reconstruction method based on a nonlinear interdependence measure. This method allows one to infer the topology of directed networks of chaotic Lorenz oscillators for a subrange of the coupling strength and link density. Finally, we apply the data-driven method to multichannel electroencephalographic recordings from an epilepsy patient. The functional brain networks obtained from this approach are consistent with the available medical information.
en_US
dc.format.extent
81 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Xarxes complexes
en_US
dc.subject
Reconstruccó de xarxes
en_US
dc.subject
Recuit simulat
en_US
dc.subject
Mesura d’interpedendència no lineal
en_US
dc.subject
Dinàmiques de Lorenz
en_US
dc.subject
Gravacions electroencefalogràfiques (EEG)
en_US
dc.subject
Connectivitat funcional
en_US
dc.subject
Redes compejas
en_US
dc.subject
Reconstruccón de redes
en_US
dc.subject
Recocido simulado
en_US
dc.subject
Medida de interdependencia no lineal
en_US
dc.subject
Dinámicas de Lorenz
en_US
dc.subject
Grabaciones electroencefalográficas (EEG)
en_US
dc.subject
Connectividad funcional
en_US
dc.subject
Complex networks
en_US
dc.subject
Network reconstruction
en_US
dc.subject
Simulated annealing
en_US
dc.subject
Nonlinear interdependence measure
en_US
dc.subject
Lorenz dynamics
en_US
dc.subject
Electroencephalographic recordings (EEG)
en_US
dc.subject
Functional connectivity
en_US
dc.title
Automatic reconstruction of complex dynamical networks
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
mgrauleg@gmail.com
en_US
dc.contributor.director
Andrzejak, Ralph Gregor
dc.contributor.director
Levnajić, Zoran, supervisor acadèmic
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Programa de doctorat en Tecnologies de la Informació i les Comunicacions