Universitat Autònoma de Barcelona. Departament de Química
Las actividades industriales han dejado contaminación en el suelo, el aire y el agua en todo el mundo. Las emisiones de SOx provenientes de gases de combustión requieren tratamiento antes de su liberación al medio ambiente. Los tratamientos fisicoquímicos convencionales utilizados hasta ahora son costosos y requieren mucho tiempo. Además, esos tratamientos también generan aguas residuales que requieren un procesamiento adicional. Para superar el desafío del tratamiento de SOx, se propone un nuevo enfoque que utiliza un método biológico respetuoso con el medio ambiente. El proceso se basa en una adsorción selectiva de SOx, seguida de un tratamiento biológico de dos etapas. Una vez adsorbidos los SOx, se someten a una primera etapa biocatalítica, en la que los microorganismos reductores de sulfato catalizan su conversión en sulfuro de hidrógeno. Posteriormente, se realiza una segunda etapa biocatalítica por microorganismos oxidantes de sulfuro, obteniendo finalmente azufre elemental. Un punto crucial que tratar en este proceso biotecnológico es la cuantificación en tiempo real de las especies de azufre antes y después de cada etapa biocatalítica. Los métodos convencionales, tales como la gravimetría, la turbidimetría, la nefelometría, la electroforesis capilar y la cromatografía iónica se han utilizado para la cuantificación de especies de azufre. Aunque esos métodos se han implementado de manera abrumadora hace unas décadas, no son adecuados para mediciones in situ y en tiempo real, requieren personal capacitado, son costosos y consumen mucho tiempo. Por lo tanto, existe la necesidad de proporcionar nuevos sistemas analíticos que puedan reemplazar a los convencionales. Las plataformas microfluídicas se han estudiado debido a su posibilidad de reemplazar un laboratorio convencional totalmente equipado. Las ventajas bien conocidas de estos sistemas de detección incluyen: compacidad, bajo consumo de muestra, producción de bajo coste, mejor monitoreo y control de procesos, análisis en tiempo real y una respuesta rápida. Estas características abren la posibilidad de realizar medidas in situ y en tiempo real. Además, funcionan de tal manera que el pretratamiento de la muestra y el ensayo químico se pueden realizar en su interior. Su diseño ergonómico y fácil de usar les permite adaptarse fácilmente para realizar el análisis deseado simplemente modificando la geometría de los canales. Estas características hacen que la microfluídica sea de interés en procesos que requieren múltiples análisis al mismo tiempo. Para la producción de sistemas analíticos miniaturizados se han utilizado varias técnicas de microfabricación (por ejemplo, micromaquinado, estampado en caliente, moldeo por inyección, ablación por láser, micromilling y litografía) y materiales (por ejemplo, silicio, polímeros, metales, cerámica, etc.). No obstante, todos estos métodos requieren personal capacitado, son costosos y requieren mucho tiempo. Además, requieren más pasos de procesamiento (por ejemplo, grabado químico, sellado, etc.) después de la fabricación. Hoy en día, los científicos han estado explorando nuevas metodologías para producir tales sistemas analíticos de una manera más factible y más barata. En esta tesis, se promueve el uso de tecnologías de impresión (impresión por chorro de tinta, serigrafía e impresión 3D) para producir plataformas analíticas para la cuantificación de compuestos químicos relevantes en reactores biotecnológicos y en el medio ambiente (S2-, SO42- and NO2-). Por lo tanto, el estado del arte de los dispositivos microfluídicos y los sistemas analíticos impresos se han desarrollado ampliamente:
Modern industrial activities have left wide-spread hazardous pollution in soil, air and water across the globe. Emissions of SOx coming from flue gases require treatment before their release into the environment. Conventional physic-chemical treatments used hitherto are expensive and time-consuming. Moreover, those treatments also generate wastewater that requires further processing. To overcome the SOx treatment challenge, a new approach using environmentally friendly biological method is proposed. The process is based on a selective adsorption of SOx, followed by a two-stage biological treatment. Once the SOx are adsorbed they undergo a first biocatalytic stage, in which sulfate-reducing microorganisms catalyze their conversion into hydrogen sulfide. Afterwards, a second biocatalytic stage by sulfide-oxidizing microorganisms is done, finally obtaining elemental sulfur. A crucial point to address in this biotechnological process is the real-time quantification of sulfur species before and after each biocatalytic stage. Conventional methods, such as gravimetry, turbidimetry, nephelometry, capillary electrophoresis and ionic chromatography have been widely used for sulfur species quantification. Although those methods have been overwhelmingly implemented a few decades ago, they are not suitable of in situ real-time measurements, require trained personnel and they are costly and time consuming. Therefore, there is a need to provide new analytical systems that can replace conventional ones. Microfluidic platforms have been extensively studied due to their possibility of replacing a fully equipped conventional laboratory. Well-known advantages of these microfluidic sensing systems include: compactness, low sample consumption, low-cost production, better overall monitoring and process control, real-time analysis and a fast response. These characteristics open the possibility of performing in situ and real-time measurements. Also, they operate in such a manner that sample pre-treatment as well as chemical assay can be performed therein. Their ergonomic and user-friendly design allows them to be easily adapted to perform a desired analysis just by simply modifying the geometry of the channels. These features make microfluidics of interest in processes that require multiple analyses at the same time. Several microfabrication techniques (e.g., micromachining, hot embossing, injection molding, laser ablation, micromilling and soft lithography) and materials (e.g., silicon, polymers, metals, ceramics, etc.) have been used for the production of miniaturized analytical systems. Nonetheless, all these methods require trained personnel and are expensive and time consuming. Moreover, they require further processing steps (e.g., etching, sealing, etc.) after the fabrication. Nowadays, scientists have been exploring new methodologies to produce such analytical systems in a more feasible and cheaper manner. In this thesis, the use of printing technologies (inkjet printing, screen-printing and 3D printing) to produce analytical platforms for quantification of relevant chemical compounds in biotechnological reactors and in the environment (S2-, SO42- and NO2-) are promoted. Hence, the state-of-the-art of microfluidic devices and the printed analytical systems have been widely developed.
Sensors; Sensores; Monitoratge; Monitorización; Monitoring; Automatització; Automatización; Automatization
543 - Química analítica
Ciències Experimentals
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
Departament de Química [494]