Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Smart controls for heat pumps are required to harness the full energy flexibility potential of building thermal loads. A literature review revealed that most strategies used for this purpose can be classified in two categories: simpler rule-based control (RBC), and model predictive control (MPC), a more complex strategy based on optimization and requiring a prior model of the systems. Both RBC and MPC can use external penalty signals to prompt their actions. The price of electricity is most often used for this purpose, leading to strategies of cost reduction. As an alternative penalty signal, a novel marginal CO2 emissions signals was also conceived. In this thesis, both an RBC and an MPC controllers were developed as supervisory controls for an air-to-water heat pump supplying the heating and cooling needs of a residential building type from the Mediterranean area of Spain. The RBC strategy modulates the temperature set-points, while the MPC strategy minimizes the overall summed penalties (costs or emissions) due to the heat pump use, while balancing with comfort constraints and a proper operation of the systems. The MPC controller in particular required the development of a simplified model of the building envelope and of the heat pump performance, both adjusted differently for heating or cooling. The MPC included several novelties, such as the mixed-integer formulation, the heat pump simplified model based on experimental data and the consideration of its computational delay. The developed controllers were then tested, firstly in an experimental “hardware-in-the-loop” setup, with a real heat pump installed in the laboratory facilities, and connected to thermal benches that emulated the loads from a building model. Implementing the control strategies on a real heat pump enabled to highlight some practical challenges such as model mismatch in the MPC, communication issues, interfacing and control conflicts with the heat pump local controller. Secondly, a simulation-only framework was developed to test other configurations of the controllers, with TRNSYS as the main dynamic building simulation tool, coupled with MATLAB for the MPC controller. In that case, the real heat pump was replaced by a detailed model which was specially developed for this purpose. It is based on static tests performed in the laboratory, and therefore reproduces the dynamic behavior of the heat pump with high fidelity. The results from experimental and simulation studies revealed the ability of both types of controllers to shift the building loads towards periods of cheaper or less CO2-emitting electricity, these two objectives being in fact contradictory. In the cases where the reference control presented a large margin for improvements, the RBC and MPC controllers performed equally and provided important savings: around 15% emissions savings in heating mode, and 30% cost savings in cooling mode. In the cases where the reference control already performed close to optimally, the RBC controller failed to provide improvements, while the MPC benefitted from its stronger optimization and prediction features, reaching 5% cost savings in heating mode and 10% emissions savings in cooling mode. The research carried out in this thesis covered many aspects of energy flexibility in buildings: creation of input penalty signals, graphical representation of flexibility, development of controllers, performance in realistic experimental setup, fitting of appropriate models and compared performance in heating and cooling. The development efforts and barriers hindering the deployment of MPC controllers at large scale for building climate control have additionally been discussed. The performance of the developed controllers was evidenced in the thesis, proving their potential for load-shifting incentivized by different penalty signals: they could become a strong asset to unlock demand-side flexibility and in fine, help integrating a larger share of RES in the grid.
Para aprovechar todo el potencial de flexibilidad energética de las cargas térmicas en los edificios equipados con bombas de calor se requiere de sistemas de control inteligente. Una revisión bibliográfica ha revelado que la mayoría de las estrategias de gestión utilizadas para esta finalidad pueden ser clasificadas en dos categorías: control en base a reglas (RBC en inglés) o predictivo (MPC en inglés), basado en optimización y en el uso de modelos. Tanto RBC como MPC pueden utilizar señales externas de penalización para fundamentar sus decisiones. El precio de la electricidad es utilizado a este fin de forma habitual en estrategias de reducción de coste. Una nueva señal de emisiones marginales de CO2 fue también creada como alternativa. Se han desarrollado un controlador RBC y un MPC para sistemas de bombas de calor aire-agua que cubren las demandas de climatización y agua caliente en el ámbito residencial. El RBC modula las consignas de temperatura, y el MPC minimiza las penalizaciones totales del sistema, al mismo tiempo que se consideran restricciones operativas y de confort. En particular, el MPC ha requerido el desarrollo de nuevos modelos simplificados, para predecir la demanda del edificio y el rendimiento de la bomba de calor, tanto en modo calefacción como en modo refrigeración. Otras novedades añadidas en la configuración del MPC son la formulación entera mixta, y la consideración del retraso debido al tiempo de cómputo. Los controladores fueron testeados, primeramente, en un entorno experimental -hardware-in-the-loop-, con una bomba de calor real instalada en el laboratorio y conectada a unos bancos térmicos que emulan las cargas térmicas del edificio. El entorno experimental ha permitido poner de manifiesto algunos retos prácticos tales como la discrepancia en el modelo del MPC y conflictos de conexión con el controlador local de la bomba de calor. En segundo lugar, un entorno de simulación ha sido creado para testear diversas configuraciones, usando TRNSYS acoplado con MATLAB. Para ello, se ha desarrollado un modelo detallado de la bomba de calor, basado en ensayos realizados en laboratorio, que reproduce el comportamiento dinámico de la bomba de calor con alta fidelidad. Tanto los resultados experimentales como los simulados han revelado la capacidad de los dos tipos de control de desplazar las cargas del edificio hacia periodos donde la electricidad era más barata o había menos emisiones de CO2, estos dos objetivos presentando de hecho impactos contradictorios. En los casos donde el control de referencia presentaba un amplio margen de mejora, los controladores RBC y MPC han demostrado la capacidad de actuar eficientemente y proveer ahorros importantes: alrededor de un 15% de emisiones en modo calefacción, y de un 30% de coste en modo frío. En aquellos casos en el que el control de referencia actuaba de forma cercana a la óptima, los controladores RBC no han sido capaces de aportar mejoras significativas, mientras que el MPC ha demostrado la capacidad de conseguir ahorros de un 5% de coste en modo calefacción y de un 10% de emisiones en modo frío. La investigación realizada en esta tesis ha abarcado amplios aspectos de la flexibilidad energética en los edificios: la generación de señales de penalización, la representación gráfica del potencial de flexibilidad, el ajuste de modelos simplificados, el desarrollo de controladores, el ensayo en entorno experimental y de simulación, con la consecuente evaluación de su rendimiento comparado en periodos de invierno y de verano, así como una discusión de las barreras que dificultan la implementación de controladores MPC y RBC a gran escala. Finalmente, la tesis ha evidenciado el rendimiento de los controladores desarrollados si se formulan de forma adecuada, demostrando su potencial para el desplazamiento del consumo eléctrico en la edificación residencial con sistemas de bomba de calor respondiendo a diferentes señales de penalización. En conclusión, los sistemas propuestos pueden ser elementos muy valiosos para favorecer la necesaria flexibilidad de la demanda térmica en la edificación y posibilitar la integración de sistemas de generación renovables en la red
Heat pumps; Model predictive control; Building model; Rule-based control; Energy flexibility; HVAC control; Smart grids; Mixed-integer MPC formulation; Energy-flexible building
68 - Indústries, oficis i comerç d'articles acabats. Tecnologia cibernètica i automàtica; 69 - Materials de construcció. Pràctiques i procediments de construcció