Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
Programa de doctorat en Tecnologies de la Informació i les Comunicacions
In the last decades, there has been an increased interest in decoding speech exclusively using visual cues, i.e. mimicking the human capability to perform lip-reading, leading to Automatic Lip-Reading (ALR) systems. However, it is well known that the access to speech through the visual channel is subject to many limitations when compared to the audio channel, i.e. it has been argued that humans can actually read around 30% of the information from the lips, and the rest is filled-in from the context. Thus, one of the main challenges in ALR resides in the visual ambiguities that arise at the word level, highlighting that not all sounds that we hear can be easily distinguished by observing the lips. In the literature, early ALR systems addressed simple recognition tasks such as alphabet or digit recognition but progressively shifted to more complex and realistic settings leading to several recent systems that target continuous lip-reading. To a large extent, these advances have been possible thanks to the construction of powerful systems based on deep learning architectures that have quickly started to replace traditional systems. Despite the recognition rates for continuous lip-reading may appear modest in comparison to those achieved by audio-based systems, the field has undeniably made a step forward. Interestingly, an analogous effect can be observed when humans try to decode speech: given sufficiently clean signals, most people can effortlessly decode the audio channel but would struggle to perform lip-reading, since the ambiguity of the visual cues makes it necessary the use of further context to decode the message. In this thesis, we explore the appropriate modeling of visual representations with the aim to improve continuous lip-reading. To this end, we present different data-driven mechanisms to handle the main challenges in lip-reading related to the ambiguities or the speaker dependency of visual cues. Our results highlight the benefits of a proper encoding of the visual channel, for which the most useful features are those that encode corresponding lip positions in a similar way, independently of the speaker. This fact opens the door to i) lip-reading in many different languages without requiring large-scale datasets, and ii) increasing the contribution of the visual channel in audio-visual speech systems. On the other hand, our experiments identify a tendency to focus on the modeling of temporal context as the key to advance the field, where there is a need for ALR models that are trained on datasets comprising large speech variability at several context levels. In this thesis, we show that both proper modeling of visual representations and the ability to retain context at several levels are necessary conditions to build successful lip-reading systems.
En les darreres dècades, hi ha hagut un interès creixent en la descodificació de la parla utilitzant exclusivament senyals visuals, es a dir, imitant la capacitat humana de llegir els llavis, donant lloc a sistemes de lectura automàtica de llavis (ALR). No obstant això, se sap que l’accès a la parla a través del canal visual està subjecte a moltes limitacions en comparació amb el senyal acústic, es a dir, s’ha argumentat que els humans poden llegir al voltant del 30% de la informació dels llavis, i la resta es completa fent servir el context. Així, un dels principals reptes de l’ALR resideix en les ambigüitats visuals que sorgeixen a escala de paraula, destacant que no tots els sons que escoltem es poden distingir fàcilment observant els llavis. A la literatura, els primers sistemes ALR van abordar tasques de reconeixement senzilles, com ara el reconeixement de l’alfabet o els dígits, però progressivament van passar a entorns mes complexos i realistes que han conduït a diversos sistemes recents dirigits a la lectura continua dels llavis. En gran manera, aquests avenços han estat possibles gracies a la construcció de sistemes potents basats en arquitectures d’aprenentatge profund que han començat a substituir ràpidament els sistemes tradicionals. Tot i que les taxes de reconeixement de la lectura continua dels llavis poden semblar modestes en comparació amb les assolides pels sistemes basats en audio, és evident que el camp ha fet un pas endavant. Curiosament, es pot observar un efecte anàleg quan els humans intenten descodificar la parla: donats senyals sense soroll, la majoria de la gent pot descodificar el canal d’àudio sense esforç¸, però tindria dificultats per llegir els llavis, ja que l’ambigüitat dels senyals visuals fa necessari l’ús de context addicional per descodificar el missatge. En aquesta tesi explorem el modelatge adequat de representacions visuals amb l’objectiu de millorar la lectura contínua dels llavis. Amb aquest objectiu, presentem diferents mecanismes basats en dades per fer front als principals reptes de la lectura de llavis relacionats amb les ambigüitats o la dependència dels parlants dels senyals visuals. Els nostres resultats destaquen els avantatges d’una correcta codificació del canal visual, per a la qual les característiques més útils són aquelles que codifiquen les posicions corresponents dels llavis d’una manera similar, independentment de l’orador. Aquest fet obre la porta a i) la lectura de llavis en molts idiomes diferents sense necessitat de conjunts de dades a gran escala, i ii) a l’augment de la contribució del canal visual en sistemes de parla audiovisuals.´ D’altra banda, els nostres experiments identifiquen una tendència a centrar-se en iii la modelització del context temporal com la clau per avançar en el camp, on hi ha la necessitat de models d’ALR que s’entrenin en conjunts de dades que incloguin una gran variabilitat de la parla a diversos nivells de context. En aquesta tesi, demostrem que tant el modelatge adequat de les representacions visuals com la capacitat de retenir el context a diversos nivells són condicions necessàries per construir sistemes de lectura de llavis amb èxit.
Automatic lip-reading; Visual speech recognition; Small-scale data; Sequence-to-sequence models; Audio-visual data; Lectura labial automàtica; Reconeixement de veu visual; Dades a petita escala; Models seqüència a seqüència; Dades audiovisuals
62 - Ingeniería. Tecnología