Deep Learning and Bayesian Techniques applied to Big Data in Industry and Neutrino Oscillations

Autor/a

Pina Otey, Sebastian

Director/a

Lux, Thorsten

Gaitan Alcalde, Vicens

Tutor/a

Casado Lechuga, María del Pilar

Fecha de defensa

2020-11-27

Páginas

238 p.



Programa de doctorado

Universitat Autònoma de Barcelona. Programa de Doctorat en Física

Resumen

Les oscil·lacions de neutrins són un fenomen complex d’interès teòric i experimental en física fonamental, estudiat a través d’experiments diversos, com la col·laboració T2K situada al Japó. T2K es compon de dues instal·lacions, que produeixen i mesuren les interaccions de neutrins per obtenir una millor comprensió de les seves oscil·lacions mitjançant l’anàlisi de dades en forma d’inferència de paràmetres, simulació de models i resposta del detector. Mitjançant aquest treball, s’aplicaran tècniques modernes de deep learning en forma d’estimadors de densitat neuronals i xarxes neuronals sobre grafs i es verificaran a fons en casos d’ús de T2K, avaluant-ne els beneficis i les mancances en comparació amb els mètodes tradicionals. Addicionalment, es parlarà d’un ús industrial d’aquestes metodologies per a la xarxa elèctrica espanyola.


Las oscilaciones de neutrinos son un fenómeno complejo de interés teórico y experimental en la física fundamental, estudiado a través de diversos experimentos, como la Colaboración T2K ubicada en Japón. T2K se compone de dos instalaciones, que producen y miden las interacciones de neutrinos para comprender mejor sus oscilaciones a través del análisis de datos en forma de inferencia de parámetros, simulación de modelos y respuesta del detector. A través de este trabajo, las técnicas modernas de deep learning en forma de estimadores de densidad neuronales y redes neuronales sobre grafos se aplicarán y verificarán a fondo en los casos de uso de T2K, evaluando sus beneficios y deficiencias en comparación con los métodos tradicionales. Adicionalmente se discutirá un uso industrial de estas metodologías para la red eléctrica española.


Neutrino oscillations are a complex phenomenon of theoretical and experimental interest in fundamental physics, studied through diverse experiments, such as the T2K Collaboration situated in Japan. T2K is composed of two facilities, which produce and measure neutrino interactions to get a better understanding of their oscillations through data analysis in the form of parameter inference, model simulation and detector response. Through this work, state-of-the-art deep learning techniques in the form of neural density estimators and graph neural networks will be applied and thoroughly verified in T2K use cases, assessing their benefits and shortcomings compared to traditional methods. Additionally an industrial usage of these methodologies for the Spanish electrical network will be discussed.

Palabras clave

Neutrins; Neutrinos; Aprenentatge profund; Aprendizaje profundo; Deep learning; Tècniques bayesianes; Técnicas bayesianas; Bayesian techniques

Materias

53 - Física

Área de conocimiento

Ciències Experimentals

Documentos

spo1de1.pdf

9.502Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)