Advanced techniques in trajectory data analysis for anomaly detection and map construction

Autor/a

Yuejun, Guo

Director/a

Bardera i Reig, Antoni

Fort, Marta

Tutor/a

Boada, Imma

Fecha de defensa

2020-05-29

Páginas

116 p.



Departamento/Instituto

Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística (2013-)

Programa de doctorado

Programa de Doctorat en Tecnologia

Resumen

With a large amount of trajectory data generated every day, there is a high demand for developing advanced techniques to discover the underlying information instead of dull and heavy manual work. This thesis focuses on the anomaly detection and map construction from GPS data. Anomaly detection aims to identify trajectories that do not follow common behaviors, and map construction deals with a set of trajectory data to generate a route graph that represents the main movement paths hidden in data. For online anomaly detection, we study the well-known Sequential Hausdorff Nearest-Neighbor Conformal Anomaly Detector (SHNN-CAD) approach, and propose an enhanced version called SHNN-CAD•. For map construction, we present a new, fast and robust three-step framework. Considering the storage limitation and computational cost dealing with large-scale data, we propose a split-and­merge strategy. Besides, we utilize the edge weight to visualize the map and remove the wrong edges.


La gran cantidad de datos de trayectorias generados cada día hace que exista una gran necesidad de desarrollar técnicas avanzadas para descubrir la información subyacente de los datos evitando un trabajo manual aburrido y pesado. Esta tesis se centra en la detección de anomalías y la construcción de mapas a partir de datos GPS. La detección de anomalías identifica trayectorias que no siguen comportamientos habituales; y la construcción de mapas recibe un conjunto de trayectorias y genera un grafo de caminos que representa los principales movimientos escondidos en los datos de entrada. Para detección de anomalías en línea, estudiamos el conocido detector SHNN- CAD y proponemos una versión mejorada llamada SHNN-CAD•. Para construcción de mapas, presentamos una estrategia con tres pasos nueva, rápida y robusta. Considerando datos a gran escala, proponemos una estrategia de división y fusión. También utilizamos el peso de las aristas para visualizar el mapa y eliminar las aristas incorrectas.

Palabras clave

Dades GPS; Datos GPS; GPS data; Mapes; Mapas; Maps; Cartografia; Cartography; Detecció d'anomalies; Detección de anomalías; Anomaly detection; Anàlisi de dades de trajectòries; Análisis de datos de trayectoria; Trajectories data analysis

Materias

68 - Industrias, oficios y comercio de artículos acabados. Tecnología cibernética y automática; 91 - Geografía. Viajes

Documentos

tyg_20200529.pdf

48.54Mb

 

Derechos

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)