Essays on statistical inference in non-regular semiparametric models

Author

Lee, Adam

Director

Mesters, Geert

Date of defense

2022-07-29

Pages

295 p.



Department/Institute

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Doctorate programs

Programa de doctorat en Economia, Finances i Empresa

Abstract

This thesis consists of three chapters which relate to problems of statistical inference in (potentially) non-regular semiparametric models. Chapter 1 considers hypothesis testing problems in semiparametric models which may be non-regular for certain values of a potentially infinite dimensional nuisance parameter. I establish that, under mild regularity conditions, tests based on the efficient score function provide locally uniform size control and enjoy minimax optimality properties. Two examples are studied in some detail. Chapter 2 applies the methodology of Chapter 1 to the case of (static) linear simultaneous equations models. Existing inference methods that exploit non-Gaussianity to identify structural parameters in such models suffer from size distortions when the structural shocks are close to Gaussian. The approach proposed herein yields valid inference for the structural parameters of interest regardless of the distance to Gaussianity. An application to production function estimation is presented. Chapter 3 develops a semi-parametric approach to conduct inference in non-Gaussian SVAR models robust to “weak” non-Gaussianity based on the ideas in Chapter 1. The method exploits non-Gaussianity when it is present, while yielding correct coverage regardless of the distribution of the structural errors. Two empirical applications are presented.


Esta tesis consta de tres cap´ítulos que se relacionan con problemas de inferencia estad´ıstica en modelos semi-paramétricos potencialmente irregulares. El capítulo 1 considera problemas con hipótesis en modelos semi-paramétricos que podrían ser irregulares para ciertos valores de un parámetro de molestia de dimensional infinita. Establezco que, en condiciones de regularidad leve, pruebas basadas en la función de puntuación eficiente proporcionan un control de tamaño localmente uniforme y son óptimas en un sentido minimax. Dos ejemplos se estudian en detalle. El capítulo 2 aplica la metodología del Capítulo 1 al caso de modelos de ecuaciones lineales simultáneas estáticas. Los métodos de inferencia existentes que explotan la no Gaussianidad para identificar parámetros estructurales en tales modelos sufren distorsiones de tamaño cuando los choques estructurales están cerca de Gaussian. El enfoque propuesto en este capítulo produce una inferencia válida para los parámetros estructurales de inter´es, independientemente de su distancia a la Gaussianidad. Se presenta una aplicación para la estimación de funciones de producción. El capítulo 3 desarrolla un enfoque semi-paramétrico para realizar inferencias en modelos SVAR no Gaussianos robustos a la no Gaussianidad “débil” basada en las ideas del Capítulo 1. El método explota la no Gaussianidad cuando está presente y a su vez que brinda una cobertura correcta independientemente de la distribución de errores estructurales. Se presentan dos aplicaciones empíricas.

Keywords

Non-regular semiparametric models; Statistical inference; Modelos semi-paramétricos potencialmente irregulares; Inferencia estadística

Subjects

33 - Economics

Documents

tal.pdf

3.042Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)