Development of Context-Aware Recommenders of Sequences of Touristic Activities

Autor/a

Orama, Ayebakuro Jonathan

Director/a

Moreno Ribas, Antonio

Borràs Nogués, Joan

Fecha de defensa

2023-02-07

Páginas

144 p.



Departamento/Instituto

Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques

Resumen

En els últims anys, els sistemes de recomanació s'han fet omnipresents a la xarxa. Molts serveis web, inclosa la transmissió de pel·lícules, la cerca web i el comerç electrònic, utilitzen sistemes de recomanació per facilitar la presa de decisions. El turisme és una indústria molt representada a la xarxa. Hi ha diversos serveis web (e.g. TripAdvisor, Yelp) que es beneficien de la integració de sistemes recomanadors per ajudar els turistes a explorar destinacions turístiques. Això ha augmentat la investigació centrada en la millora dels recomanadors turístics per resoldre els principals problemes als quals s'enfronten. Aquesta tesi proposa nous algorismes per a sistemes recomanadors turístics que aprenen les preferències dels turistes a partir dels seus missatges a les xarxes socials per suggerir una seqüència d'activitats turístiques que s'ajustin a diversos contextes i incloguin activitats afins. Per aconseguir-ho, proposem mètodes per identificar els turistes a partir de les seves publicacions a Twitter, identificant les activitats experimentades en aquestes publicacions i perfilant turistes similars en funció dels seus interessos, informació contextual i períodes d'activitat. Aleshores, els perfils d'usuari es combinen amb un algorisme de mineria de regles d'associació per capturar relacions implícites entre els punts d'interès de cada perfil. Finalment, es fa un rànquing de regles i un procés de selecció d'un conjunt d'activitats recomanables. Es va avaluar la precisió de les recomanacions i l'efecte del perfil d'usuari. A més, ordenem el conjunt d'activitats mitjançant un algorisme multi-objectiu per enriquir l'experiència turística. També realitzem una segona fase d'anàlisi dels fluxos turístics a les destinacions que és beneficiós per a les organitzacions de gestió de destinacions, que volen entendre la mobilitat turística. En general, els mètodes i algorismes proposats en aquesta tesi es mostren útils en diversos aspectes dels sistemes de recomanació turística.


En los últimos años, los sistemas de recomendación se han vuelto omnipresentes en la web. Muchos servicios web, incluida la transmisión de películas, la búsqueda en la web y el comercio electrónico, utilizan sistemas de recomendación para ayudar a la toma de decisiones. El turismo es una industria altament representada en la web. Hay varios servicios web (e.g. TripAdvisor, Yelp) que se benefician de la inclusión de sistemas recomendadores para ayudar a los turistas a explorar destinos turísticos. Esto ha aumentado la investigación centrada en mejorar los recomendadores turísticos y resolver los principales problemas a los que se enfrentan. Esta tesis propone nuevos algoritmos para sistemas recomendadores turísticos que aprenden las preferencias de los turistas a partir de sus mensajes en redes sociales para sugerir una secuencia de actividades turísticas que se alinean con diversos contextos e incluyen actividades afines. Para lograr esto, proponemos métodos para identificar a los turistas a partir de sus publicaciones en Twitter, identificar las actividades experimentadas en estas publicaciones y perfilar turistas similares en función de sus intereses, contexto información y periodos de actividad. Luego, los perfiles de usuario se combinan con un algoritmo de minería de reglas de asociación para capturar relaciones entre los puntos de interés que aparecen en cada perfil. Finalmente, un proceso de clasificación de reglas y selección de actividades produce un conjunto de actividades recomendables. Se evaluó la precisión de las recomendaciones y el efecto de la elaboración de perfiles de usuario. Ordenamos además el conjunto de actividades utilizando un algoritmo multi-objetivo para enriquecer la experiencia turística. También llevamos a cabo un análisis de los flujos turísticos en los destinos, lo que es beneficioso para las organizaciones de gestión de destinos, que buscan entender la movilidad turística. En general, los métodos y algoritmos propuestos en esta tesis se muestran útiles en varios aspectos de los sistemas de recomendación turística.


In recent years, recommender systems have become ubiquitous on the web. Many web services, including movie streaming, web search and e-commerce, use recommender systems to aid human decision-making. Tourism is one industry that is highly represented on the web. There are several web services (e.g. TripAdvisor, Yelp) that benefit from integrating recommender systems to aid tourists in exploring tourism destinations. This has increased research focused on improving tourism recommender systems and solving the main issues they face. This thesis proposes new algorithms for tourism recommender systems that learn tourist preferences from their social media data to suggest a sequence of touristic activities that align with various contexts and include affine activities. To accomplish this, we propose methods for identifying tourists from their frequent Twitter posts, identifying the activities experienced in these posts, and profiling similar tourists based on their interests, contextual information, and activity periods. User profiles are then combined with an association rule mining algorithm for capturing implicit relationships between points of interest apparent in each profile. Finally, a rule ranking and activity selection process produces a set of recommendable activities. The recommendations were evaluated for accuracy and the effect of user profiling. We further order the set of activities using a multi-objective algorithm to enrich the tourist experience. We also carry out a second-stage analysis of tourist flows at destinations which is beneficial to destination management organisations seeking to understand tourist mobility. Overall, the methods and algorithms proposed in this thesis are shown to be useful in various aspects of tourism recommender systems.

Palabras clave

Intel.ligència artificial; Sistemas de recomanació; Turismo; Inteligencia artificial; Sistemas de recomendación; Turisme; Artificial Intelligence; Recommendation Systems; Tourism

Materias

004 - Informática

Área de conocimiento

Enginyeria i arquitectura

Documentos

TESI Ayebakuro Jonathan Orama.pdf

37.27Mb

 

Derechos

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)