Applications of biased randomised algorithms and simheuristics to asset and liability management

Author

Nieto Ranero, Armando Miguel

Director

Juan, Angel A.

Guillen, Montserrat

Date of defense

2022-07-22

Pages

199 p.



Department/Institute

Universitat Oberta de Catalunya. Escola de Doctorat

Doctorate programs

Tecnologías de la información y de redes

Abstract

Asset and Liability Management (ALM) has captured the attention of academics and financial researchers over the last few decades. On the one hand, we need to try to maximise our wealth by taking advantage of the financial market and, on the other hand, we need to cover our payments (liabilities) over time. The purpose of ALM is to give investors a series of resources or techniques to select the appropriate assets on the financial market that respond to the aforementioned two key factors: cover our liabilities and maximise our wealth. This thesis presents a set of techniques that are capable of tackling realistic financial problems without the usual requirement of considerable computational resources. These techniques are based on heuristics and simulation. Specifically, a biased randomised metaheuristic model is developed that has a direct application in the way insurance companies usually operate. The algorithm makes it possible to efficiently select the smallest number of assets, mainly fixed income, on the balance sheet while guaranteeing the company's obligations. This development allows for the incorporating of the credit quality of the issuer of the assets used. Likewise, a portfolio optimisation model with liabilities is developed and solved with a genetic algorithm. The portfolio optimisation problem differs from the usual one in that it is multi-period, and incorporates liabilities over time. Additionally, the possibility of external financing is included when the entity does not have sufficient cash. These conditions give rise to a complex problem that is efficiently solved by an evolutionary algorithm. In both cases, the algorithms are improved with the incorporation of Monte Carlo simulation. This allows the solutions to be robust when considering realistic market situations. The results are very promising. This research shows that simheuristics is an ideal method for this type of problem.


La gestión de activos y pasivos (asset and liability management, ALM) ha acaparado la atención de académicos e investigadores financieros en las últimas décadas. Por un lado, debemos tratar de maximizar nuestra riqueza aprovechando el mercado financiero, y por otro, debemos cubrir nuestros pagos (pasivos) a lo largo del tiempo. El objetivo del ALM es dotar al inversor de una serie de recursos o técnicas para seleccionar los activos del mercado financiero adecuados para obedecer a los dos factores clave mencionados: cumplir con nuestros pasivos y maximizar nuestra riqueza. Esta tesis presenta un conjunto de técnicas que son capaces de abordar problemas financieros realistas sin la necesidad habitual de considerables recursos computacionales. Estas técnicas se basan en la heurística y la simulación. En concreto, se desarrolla un modelo metaheurístico sesgado que tiene una aplicación directa en la operación habitual de inmunización de las compañías de seguros. El algoritmo permite seleccionar eficientemente el menor número de activos, principalmente de renta fija, en el balance y garantizar las obligaciones de la compañía. Este desarrollo permite incorporar la calidad crediticia del emisor de los activos utilizados. Asimismo, se desarrolla un modelo de optimización de la cartera con el pasivo y se resuelve con un algoritmo genético. El problema de optimización de la cartera difiere del habitual en que es multiperiodo e incorpora los pasivos a lo largo del tiempo. Además, se incluye la posibilidad de financiación externa cuando la entidad no tiene suficiente efectivo. Estas condiciones dan lugar a un problema complejo que se resuelve eficientemente mediante un algoritmo evolutivo. En ambos casos, los algoritmos se mejoran con la incorporación de la simulación de Montecarlo. Esto permite que las soluciones sean robustas cuando consideramos situaciones de mercado realistas. Los resultados son muy prometedores. Esta investigación demuestra que la simheurística es un método ideal para este tipo de problemas.


La gestió d'actius i passius (asset and liability management, ALM) ha acaparat l'atenció d'acadèmics i investigadors financers les darreres dècades. D'una banda, hem de mirar de maximitzar la nostra riquesa aprofitant el mercat financer, i de l'altra, hem de cobrir els nostres pagaments (passius) al llarg del temps. L'objectiu de l'ALM és dotar l'inversor d'una sèrie de recursos o tècniques per seleccionar els actius del mercat financer adequats per obeir als dos factors clau esmentats: complir els passius i maximitzar la nostra riquesa. Aquesta tesi presenta un conjunt de tècniques que són capaces d'abordar problemes financers realistes sense la necessitat habitual de recursos computacionals considerables. Aquestes tècniques es basen en l'heurística i la simulació. En concret, es desenvolupa un model metaheurístic esbiaixat que té una aplicació directa a l'operació habitual d'immunització de les companyies d'assegurances. L'algorisme permet seleccionar eficientment el menor nombre d'actius, principalment de renda fixa, al balanç i garantir les obligacions de la companyia. Aquest desenvolupament permet incorporar la qualitat creditícia de l'emissor dels actius utilitzats. Així mateix, es desenvolupa un model d'optimització de la cartera amb el passiu i es resol amb un algorisme genètic. El problema d'optimització de la cartera difereix de l'habitual en el fet que és multiperíode i incorpora els passius al llarg del temps. A més, s'inclou la possibilitat de finançament extern quan l'entitat no té prou efectiu. Aquestes condicions donen lloc a un problema complex que es resol eficientment mitjançant un algorisme evolutiu. En tots dos casos, els algorismes es milloren amb la incorporació de la simulació de Montecarlo. Això permet que les solucions siguin robustes quan considerem situacions de mercat realistes. Els resultats són molt prometedors. Aquesta recerca demostra que la simheurística és un mètode ideal per a aquesta mena de problemes.

Keywords

heurística; heurística; heuristics; finances; finanzas; finance; investigació operativa; investigación operativa; operational research; ALM; ALM; ALM; gestió de carteres; gestión de carteras; portfolio management

Subjects

00 – Science and knowledge. Research. Culture. Humanities; 004 - Computer science; 336 – Finance. Banking. Money. Stock market

Knowledge Area

Investigación operativa

Documents

01 Thesis_Armando Miguel Nieto Ranero (2).pdf

6.460Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)