Algebraic integrability of foliations by extension to Hirzebruch surfaces. Applications to bounded negativity.

Author

Pérez-Callejo, Elvira ORCID

Director

Galindo Pastor, Carlos

Monserrat, Francisco ORCID

Tutor

Galindo Pastor, Carlos

Date of defense

2023-12-21

Pages

152 p.



Department/Institute

Universitat Jaume I. Escola de Doctorat

Doctorate programs

Programa de Doctorat en Ciències

Abstract

We make progress on two open mathematical problems: the problem of algebraic integrability of polynomial foliations on $\mathbb{C}^2$ and the bounded negativity conjecture. For the first one, we identify $\mathbb{C}^2$ with an open set of $\mathbb{P}^2$ or $\mathbb{F}_{\delta}$, $\delta\geq0$, and study foliations $\mathcal{F}$ on these surfaces whose local form is isomorphic to the affine foliation. We obtain necessary conditions for algebraic integrability by studying the sky of the dicritical configuration of $\mathcal{F}$. We propose algorithms that solve the first problem under some conditions. For the second one, we consider a rational surface $S$ and an integral curve $H$ on $S$. If $S$ is obtained from $\mathbb{F}_{\delta}$ (respectively, $\mathbb{P}^2$), we provide a bound on $\frac{H^2}{H\cdot (F^*+M^*)}$ (respectively, on $\frac{H^2}{(H\cdot L^*)^2}$ and on $\frac{H^2}{H\cdot L^*}$), where $F^*$, $M^*$ and $L^*$ are the total transforms of a general fiber, a section of self-intersection $\delta$ of $\mathbb{F}{\delta}$ and a general line of $\mathbb{P}^2$ respectively.

Keywords

Foliation; Algebraic integrability; Bounded negativity; Hirzebruch surface

Subjects

51 - Mathematics; 512 - Algebra

Knowledge Area

Ciències

Note

Doctorat internacional.

Documents

2023_Tesis_Pérez Callejo_Elvira.pdf

1.230Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)