Algebraic integrability of foliations by extension to Hirzebruch surfaces. Applications to bounded negativity.

dc.contributor
Universitat Jaume I. Escola de Doctorat
dc.contributor.author
Pérez-Callejo, Elvira
dc.date.accessioned
2023-12-22T10:51:22Z
dc.date.available
2023-12-22T10:51:22Z
dc.date.issued
2023-12-21
dc.identifier.uri
http://hdl.handle.net/10803/689627
dc.description
Doctorat internacional.
ca
dc.description.abstract
We make progress on two open mathematical problems: the problem of algebraic integrability of polynomial foliations on $\mathbb{C}^2$ and the bounded negativity conjecture. For the first one, we identify $\mathbb{C}^2$ with an open set of $\mathbb{P}^2$ or $\mathbb{F}_{\delta}$, $\delta\geq0$, and study foliations $\mathcal{F}$ on these surfaces whose local form is isomorphic to the affine foliation. We obtain necessary conditions for algebraic integrability by studying the sky of the dicritical configuration of $\mathcal{F}$. We propose algorithms that solve the first problem under some conditions. For the second one, we consider a rational surface $S$ and an integral curve $H$ on $S$. If $S$ is obtained from $\mathbb{F}_{\delta}$ (respectively, $\mathbb{P}^2$), we provide a bound on $\frac{H^2}{H\cdot (F^*+M^*)}$ (respectively, on $\frac{H^2}{(H\cdot L^*)^2}$ and on $\frac{H^2}{H\cdot L^*}$), where $F^*$, $M^*$ and $L^*$ are the total transforms of a general fiber, a section of self-intersection $\delta$ of $\mathbb{F}{\delta}$ and a general line of $\mathbb{P}^2$ respectively.
ca
dc.format.extent
152 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Jaume I
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Foliation
ca
dc.subject
Algebraic integrability
ca
dc.subject
Bounded negativity
ca
dc.subject
Hirzebruch surface
ca
dc.subject.other
Ciències
ca
dc.title
Algebraic integrability of foliations by extension to Hirzebruch surfaces. Applications to bounded negativity.
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
ca
dc.subject.udc
512
ca
dc.contributor.director
Galindo Pastor, Carlos
dc.contributor.director
Monserrat, Francisco
dc.contributor.tutor
Galindo Pastor, Carlos
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
http://dx.doi.org/10.6035/14104.2023.840914
ca
dc.description.degree
Programa de Doctorat en Ciències


Documents

2023_Tesis_Pérez Callejo_Elvira.pdf

1.230Mb PDF

This item appears in the following Collection(s)