Biological brain-age prediction using machine learning on neuroimaging data: links with pathophysiological mechanisms, dementia risk factors and cognitive decline

dc.contributor
Universitat Pompeu Fabra. Departament de Medicina i Ciències de la Vida
dc.contributor.author
Cumplido Mayoral, Irene
dc.date.accessioned
2024-06-18T13:34:30Z
dc.date.available
2024-06-18T13:34:30Z
dc.date.issued
2024-06-07
dc.identifier.uri
http://hdl.handle.net/10803/691460
dc.description.abstract
This thesis explores the links between neuroimaging-derived brain-age, which is computed using machine learning techniques, and different pathophysiological mechanisms, dementia risk factors and cognitive decline in asymptomatic individuals in the early stage of preclinical AD and in individuals with mild cognitive impairment. We showed that we can develop a neuroimaging-based biomarker for biological brain age (the so-called brain-age), which is robust and generalizable across participants from different cohorts. We further found that having an older-appearing brain is associated with higher neuronal loss measured with plasma neurofilament light (NfL), more advanced stages of amyloid and tau pathology and carrying the APOE-ε34 allele, and higher white matter hyperintensities. Additionally, brain-age might be able to show sex differences in brain aging. Moreover, findings showed that brain-age captures the association between modifiable risk factors and longitudinal cognitive decline, particularly in individuals that do not have Aβ pathology. Furthermore, our findings showed that higher TREM2-mediated microglial reactivity, as measured with CSF sTREM2, was associated with a younger brain-age after adjusting for AD pathology. These findings contribute to the growing field of brain-age as a biomarker of biological brain aging. Our results help in understanding of the mechanisms underlying biological brain aging, cognitive decline, and different physiological brain process such as neurodegeneration, glial activation, AD pathology and cerebrovascular disease. This highlights the potential of brain-age for preventive interventions targeting cognitive decline and providing insights into aging-related mechanisms.
ca
dc.description.abstract
Esta tesis explora los vínculos entre la edad cerebral derivada de neuroimágenes (brain-age), que se calcula utilizando técnicas de aprendizaje automático, y diferentes mecanismos fisiopatológicos, factores de riesgo de demencia y deterioro cognitivo en individuos asintomáticos en la fase inicial de la enfermedad del Alzheimer (EA) preclínica y en individuos con deterioro cognitivo leve. Demostramos que podemos desarrollar un biomarcador basado en neuroimágenes para la edad biológica del cerebro (la llamada edad brain-age), que es robusto y generalizable entre participantes de diferentes cohortes. Además, descubrimos que tener un cerebro con apariencia de mayor edad se asocia con una mayor pérdida neuronal medida con luz de neurofilamento (NfL) en plasma, estadios más avanzados de patología amiloide y tau y portar el alelo APOE-ε34, así como mayores hiperintensidades de la sustancia blanca. Además, brain-age podría mostrar diferencias de sexo en el envejecimiento cerebral. Por otra parte, los hallazgos mostraron que el brain-age capta la asociación entre los factores de riesgo modificables y el deterioro cognitivo longitudinal, particularmente en individuos que no tienen patología Aβ. Además, nuestros hallazgos mostraron que una mayor reactividad microglial mediada por TREM2, medida con sTREM2 en líquido cefalorraquídeo (LCR), se asoció con una edad cerebral más joven después de ajustar por la patología de la EA. Estos hallazgos contribuyen al creciente campo del brain-age como biomarcador del envejecimiento biológico del cerebro. Nuestros resultados ayudan a comprender los mecanismos subyacentes al envejecimiento biológico del cerebro, el deterioro cognitivo y diferentes procesos fisiológicos cerebrales como la neurodegeneración, la activación glial, la patología de la EA y las enfermedades cerebrovasculares. Esto pone de relieve el potencial del brain-age para las intervenciones preventivas dirigidas al deterioro cognitivo y proporciona información sobre los mecanismos relacionados con el envejecimiento.
ca
dc.format.extent
259 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
ca
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Brain aging
ca
dc.subject
Machine learning
ca
dc.subject
Preclinical Alzheimer’s Disease
ca
dc.subject
Neuroimaging
ca
dc.subject
CSF biomarkers
ca
dc.subject
Cognitive decline
ca
dc.subject
Dementia risk factors
ca
dc.subject
Pathophysiological mechanisms
ca
dc.subject
Envejecimiento cerebral
ca
dc.subject
Aprendizaje automático
ca
dc.subject
Enfermedad de Alzheimer Preclínica
ca
dc.subject
Neuroimagen
ca
dc.subject
Biomarcadores de LCR
ca
dc.subject
Deterioro cognitivo
ca
dc.subject
Factores de riesgo de demencia
ca
dc.subject
Mecanismos fisiopatológicos
ca
dc.subject
Envelliment cerebral
ca
dc.subject
Aprenentatge automàtic
ca
dc.subject
Malaltia d'Alzheimer Preclínica
ca
dc.subject
Neuroimatge
ca
dc.subject
Biomarcadors de LCR
ca
dc.subject
Deteriorament cognitiu
ca
dc.subject
Factors de risc de demència
ca
dc.subject
Mecanismes fisiopatològics
ca
dc.title
Biological brain-age prediction using machine learning on neuroimaging data: links with pathophysiological mechanisms, dementia risk factors and cognitive decline
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
616.8
ca
dc.contributor.authoremail
icumplido@barcelonabeta.org
ca
dc.contributor.director
Gispert, Juan Domingo
dc.contributor.director
Vilaplana Besler, Verónica
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Programa de Doctorat en Biomedicina


Documents

ticm.pdf

31.36Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)