Geometric Numerical Integration for Hamiltonian Monte Carlo and Extrapolation

dc.contributor
Universitat Jaume I. Escola de Doctorat
dc.contributor.author
Shaw, Luke
dc.date.accessioned
2024-11-19T08:10:31Z
dc.date.available
2024-11-19T08:10:31Z
dc.date.issued
2024-11-08
dc.identifier.uri
http://hdl.handle.net/10803/692560
dc.description
Compendi d'articles, Doctorat internacional
ca
dc.description.abstract
Hamiltonian ordinary differential equations (ODEs) occur in many applications (celestial mechanics, molecular dynamics, sampling) and their efficient numerical integration is thus of great interest. This thesis reviews the important concepts of classical numerical integration (stability and order) and their pitfalls and relevance when translated to geometric numerical integration, the alternative paradigm most appropriate to the study of numerical integrators for Hamiltonian problems, which possess the key geometric property of symplecticity. The success of integrators which conserve this property is elaborated through numerical experiments and the now well-established theory of backward error analysis, before various approaches to the optimal design of symplectic integrators are reviewed. The application of extrapolation methods to symplectic integration and a review of the operation of Hamiltonian Monte Carlo (HMC) and results characterising its performance round out the introduction. The remainder of the thesis consists of three chapters, each corresponding to a published research article - on generalised extrapolation methods, preconditioning for alternative integrators for HMC, and the optimal stability interval of a family of integrators for semilinear second-order ODEs - and a conclusion with proposals for future work stemming from the results of the thesis.
ca
dc.format.extent
165 p.
ca
dc.language.iso
eng
ca
dc.publisher
Universitat Jaume I
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
ca
dc.rights.uri
http://creativecommons.org/licenses/by-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Geometric Numerical Integration
ca
dc.subject
Splitting methods
ca
dc.subject
Hamiltonian Monte Carlo
ca
dc.subject
Symplectic Integrators
ca
dc.subject
Extrapolation methods
ca
dc.subject
Numerical Analysis
ca
dc.subject.other
Ciències
ca
dc.title
Geometric Numerical Integration for Hamiltonian Monte Carlo and Extrapolation
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
ca
dc.contributor.director
Casas, Fernando
dc.contributor.director
Sanz-Serna, JM
dc.contributor.tutor
Casas, Fernando
dc.embargo.terms
cap
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
http://dx.doi.org/10.6035/14104.2024.850463
ca
dc.description.degree
Programa de Doctorat en Ciències


Documents

2024_Tesis_Shaw_Luke Daniel.pdf

5.232Mb PDF

This item appears in the following Collection(s)