Unraveling the mechanism of CH3CH2OH dehydrogenation on m-ZrO2(111) surface, Au13 cluster, and Au13 cluster/m-ZrO2(111) surface: a DFT and microkinetic modeling study

Autor/a

de Morais, Leonardo Henrique ORCID

Director/a

Andres, Juan ORCID

Fernandes Gouveia, Amanda ORCID

Tutor/a

Andres, Juan ORCID

Data de defensa

2024-12-16

Pàgines

70 p.



Departament/Institut

Universitat Jaume I. Escola de Doctorat

Programa de doctorat

Programa de Doctorat en Ciències

Resum

In this study, we investigate the dehydrogenation of ethanol and the production of CH3CHO and H2 on the m-ZrO2(111) surface, an Au13 cluster, and Au13/m-ZrO2(111) surface, using density functional theory simulations. Our primary objective is to elucidate the reaction mechanisms through thermodynamic and kinetic analysis of these catalytic processes, identifying the transition states. To further validate these findings, we employ a microkinetic model to calculate the rate constants, offering a detailed and comprehensive understanding of the reaction pathways involved. First-principles calculations were conducted using the Quantum ESPRESSO package, applying the BEEF-vdW functional for exchange and correlation interactions. The model systems were constructed in a two-dimensional supercell with periodic boundary conditions in the x and y directions, while a vacuum layer was introduced along the z direction to avoid interactions between periodic supercell slabs. The ethanol dehydrogenation process on both the m-ZrO2(111) surface and the Au13 cluster proceeds via two fundamental steps: the initial cleavage of the O–H bond in ethanol, yielding a CH3CH2O intermediate, followed by the formation of H2. The O–H bond dissociation occurs through interactions with lattice oxygen on the m-ZrO2(111) surface or low-coordination Au atoms in the Au13 cluster. While microkinetic modeling reveals relatively low rate constants for this pathway, the Au13/mZrO2(111) composite introduces an additional step in which a hydrogen atom migrates from the m-ZrO2(111) surface to the Au13 cluster. Despite this added complexity, our analysis shows that the activation energies for all three transition states are comparable, with the Au13/m-ZrO2(111) system demonstrating lower energy barriers and more favorable rate constants for ethanol dehydrogenation. These findings highlight the potential of Au13 clusters supported on m-ZrO2(111) for efficient and selective production of CH3CHO and H2, offering key insights for the design of advanced catalytic systems.

Paraules clau

CH3CH2OH dehydrogenation; Free energy profiles; DFT calculations; Microkinetic modeling study

Matèries

54 - Química

Àrea de coneixement

Ciències

Nota

Compendi d'articles, Cotutela

Documents

2025_Tesis_De Morais_Leonardo Henrique.pdf

8.474Mb

 

Drets

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)