On additive binary nonlinear codes and steganography

Autor/a

Ronquillo Moreno, Lorena

Director/a

Rifà Coma, Josep

Data de defensa

2012-05-11

ISBN

9788449031236

Dipòsit Legal

B-33614-2012

Pàgines

127 p.



Departament/Institut

Universitat Autònoma de Barcelona. Departament d'Enginyeria de la Informació i de les Comunicacions

Resum

Un codi C rep el nom de Z2Z4-additiu si les seves coordenades es poden dividir en dos subconjunts X i Y , de tal manera que el codi punctured de C, obtingut en eliminar les coordenades que no es troben a X –o, respectivament, a Y – és un codi binari lineal – respectivament, un codi quaternari lineal–. La imatge del mapa de Gray de C és un codi binari i, sovint, no lineal, que s’anomena Z2Z4-lineal. Aquesta tesi presenta noves famílies de codis Z2Z4-additius, amb la particularitat que les seves imatges de Gray són codis Z2Z4-lineals que tenen els mateixos paràmetres i propietats que la coneguda família de codis de Reed-Muller binaris i lineals. També, tot considerant la classe de codis perfectes Z2Z4-lineals, els quals se sap que són completament regulars, es fan servir les construccions d’extensió, puncture, shorten i lifting, i s’estudia si els codis obtinguts són uniformement empaquetats o completament regulars. A més de proporcionar fiabilitat en els canals de comunicació, la teoria de codis s’ha aplicat recentment a l’esteganografia, és a dir, a la ciència d’ocultar informació confidencial dins d’altres missatges, aparentment inofensius –l’objecte recobridor–, de manera que terceres parts no puguin detectar l’esmentada informació. Aquest procés s’ha plantejat a la literatura modificant el bit menys significatiu dels símbols de l’objecte recobridor per transmetre el missatge secret (esteganografia binària), o bé modificant els dos bits menys significatius ( 1-esteganografia). Respecte a la 1-esteganografia, s’exposen dos nous mètodes d’embedding basats en codis perfectes Z2Z4-lineals, que assoleixen una taxa d’embedding més alta que amb altres mètodes ja coneguts, per una distorsió donada; mentre que es presenta un altre mètode, basat en el producte de dos o més codis de Hamming q-aris, conforme a l’esteganografia binària.


Un código C recibe el nombre de Z2Z4-aditivo si sus coordenadas se pueden dividir en dos subconjuntos X e Y , tales que el código punctured de C, obtenido a partir de eliminar las coordenadas que no están en X –o, respectivamente, en Y – es un código binario lineal –respectivamente, un código cuaternario lineal–. La imagen del mapa de Gray de C es un código Z2Z4-lineal, que es un código binario y, a menudo, no lineal. En esta tesis se presentan nuevas familias de códigos Z2Z4-aditivos, con la particularidad de que sus imágenes a través del mapa de Gray son códigos Z2Z4-lineales con los mismos parámetros y propiedades que la conocida familia de códigos de Reed-Muller binarios y lineales. Considerando la clase de códigos perfectos Z2Z4-lineales, los cuales se sabe que son completamente regulares, se han utilizado las construcciones de extensión, puncture, shorten y lifting, y estudiado si los códigos obtenidos en cada caso eran uniformemente empaquetados o completamente regulares. Además de proporcionar fiabilidad en los canales de comunicación, la teoria de códigos se ha aplicado recientemente a la esteganografía, es decir, a la ciencia de ocultar información confidencial en otros mensajes, aparentemente inofensivos –el objeto recubridor– de tal manera que dicha información no pueda ser detectada por terceros. Este proceso se ha planteado en la literatura modificando el bit menos significativo de los símbolos del objeto recubridor (esteganografía binaria), o bien modificando los dos bits menos significativos ( 1-esteganografía). Con respecto a la 1-esteganografía, se exponen dos nuevos métodos de embedding basados en códigos perfectos Z2Z4-lineales, que alcanzan una tasa de embedding superior a la de otros métodos anteriores, para una distorsión dada; mientras que se presenta otro método, basado en el producto de dos o más códigos de Hamming q-arios, conforme a la esteganografía binaria.


A code C is said to be Z2Z4-additive if its coordinates can be partitioned into two subsets X and Y , in such a way that the punctured code of C obtained by removing the coordinates outside X –or, respectively, Y – is a binary linear code –respectively, a quaternary linear code–. The Gray map image of C is a binary and often nonlinear code called Z2Z4-linear code. In this dissertation, new families of Z2Z4-additive codes are presented, with the particularity that their Gray map images are Z2Z4-linear codes having the same parameters and properties as the well-known family of binary linear Reed-Muller codes. Considering the class of perfect Z2Z4-linear codes, which are known to be completely regular, we have used the extension, puncture, shorten and lifting constructions, and studied the uniformly packed condition and completely regularity of the obtained codes. Besides providing reliability in communication channels, coding theory has been recently applied to steganography, i.e., the science of hiding sensitive information within an innocuouslooking message –the cover object– in such a way that third parties cannot detect that information. This hiding process has been addressed in the literature either by distorting the least significant bit of symbols in the cover object to transmit the secret message (binary steganography), or by distorting the two least significant bits ( 1-steganography). With respect to 1-steganography, two new embedding methods based on perfect Z2Z4- linear codes are introduced, achieving a higher embedding rate for a given distortion than previous methods; while another method, based on the product of more than two perfect q-ary Hamming codes, is presented conforming to binary steganography.

Paraules clau

Coding theory; Steganography; Data-hiding

Matèries

004 - Informàtica

Àrea de coneixement

Tecnologies

Documents

lrm1de1.pdf

1.668Mb

 

Drets

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Aquest element apareix en la col·lecció o col·leccions següent(s)